Purpose: The main objective of this study was performed to determine the effect of selective laser sintering parameters such as power output, laser distance between the point’s sintered metal powder during additive manufacturing as well as the orientation of the model relative to the laser beam and substrate on the surface quality of the model. Design/methodology/approach: In research the device for the selective laser sintering of metal powders Renishaw AM 125 machine was used. On the basis of an experiment plan, 24 models sample was made, which were tested to determine the surface roughness and thus describe an influence of process parameters on the model and the orientation of the surface quality. Research model was developed and manufactured with the Autofab software, and then imported into the machine, which, based on the plan of the experiment carry out models. Findings: On the basis of studies it was found that the surface quality models using 316L stainless steel with the assumed parameters of the experiment depends on the process parameters used during the selective laser sintering method as well as the orientation of formed walls of the model relative to the substrate and thus the laser beam. Research limitations/implications: Studies were carried out to determine the effects of only two parameters on the quality of surface. In the following, it is planned to perform metallographic studies to determine the effect of process parameters on the mechanical properties and the structure executed models. In the future planned are the investigations on the influence of laser parameters such as speed, focus offset, exposure time, diameter of laser beam and hatch parameters such as hatch type, distance and hatch distance on the quality of the elements structure and mechanical properties as well. Practical implications: Making models of metallic powders by selective laser sintering allows quickly designing and building functional models and equipment, quick verification of the project without opportunity to incur significant costs to the complex and expensive tools. Originality/value: While SLM can be used as a rapid prototyping process, it is extremely useful as a direct manufacturing process able to produce extremely complex parts with different surface quality which would be impossible to produce by other means. The ability to produce almost any 3D shape gives engineers complete design freedom.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.