This paper presents a systematic review of the literature and the classification of fuzzy logic application in an infectious disease. Although the emergence of infectious diseases and their subsequent spread have a significant impact on global health and economics, a comprehensive literature evaluation of this topic has yet to be carried out. Thus, the current study encompasses the first systematic, identifiable and comprehensive academic literature evaluation and classification of the fuzzy logic methods in infectious diseases. 40 papers on this topic, which have been published from 2005 to 2019 and related to the human infectious diseases were evaluated and analyzed. The findings of this evaluation clearly show that the fuzzy logic methods are vastly used for diagnosis of diseases such as dengue fever, hepatitis and tuberculosis. The key fuzzy logic methods used for the infectious disease are the fuzzy inference system; the rule-based fuzzy logic, Adaptive Neuro-Fuzzy Inference System (ANFIS) and fuzzy cognitive map. Furthermore, the accuracy, sensitivity, specificity and the Receiver Operating Characteristic (ROC) curve were universally applied for a performance evaluation of the fuzzy logic techniques. This thesis will also address the various needs between the different industries, practitioners and researchers to encourage more research regarding the more overlooked areas, and it will conclude with several suggestions for the future infectious disease researches.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.