Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 2 | 1 |
Tytuł artykułu

Parametric generation of high frequency coherent light in negative index materials and materials with strong anomalous dispersion

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We demonstrate the possibility of generation of coherent radiation with tunable frequencies higher than the frequency of the driving field vd in a nonlinear medium utilizing the difference combination resonance that occurs when vd matches the difference of the frequencies of the two generated fields ω1 and ω2. We find that such a resonance can appear in materials which have opposite signs of refractive index at ω1 and ω2. It can also occur in positive refractive index materials with strong anomalous dispersion if at one of the generated frequencies the group and phase velocities are opposite to each other. We show that the light amplification mechanism is equivalent to a combination resonance in a system of two coupled parametric oscillators with the opposite sign of masses. Such a mechanism holds promise for a new kind of light source that emits coherent radiation of tunable wavelengths by an optical parametric amplification process with the frequency higher than vd.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
2
Numer
1
Opis fizyczny
Daty
otrzymano
2014-11-07
zaakceptowano
2015-01-19
online
2015-03-23
Twórcy
  • Texas A&M University, College Station TX 77843
  • Princeton University, Princeton NJ 08544
autor
  • Texas A&M University, College Station TX 77843
autor
  • Texas A&M University, College Station TX 77843
  • Baylor University, Waco, TX 76706
autor
  • Texas A&M University, College Station TX 77843
  • Xi’an Jiaotong University, Xi’an, China
Bibliografia
  • [1] P.A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, Phys. Rev.Lett. 7, 118 (1961).
  • [2] W. Kaiser and C.G.B. Garrett, Phys. Rev. Lett. 7, 229 (1961).
  • [3] P.D. Maker and R.W. Terhune, Phys. Rev. 137, A801 (1965).
  • [4] P.D. Maker, R.W. Terhune and C.M. Savage, Phys. Rev. Lett. 12,507 (1964).
  • [5] D. A. Long, The Raman Effect: A Unified Treatment of the Theoryof Raman Scattering by Molecules, (John Wiley & Sons Ltd,2002)
  • [6] E. Garmire, Opt. Express 21, 30532 (2013).
  • [7] S. Mukamel, Principles of Nonlinear Optical Spectroscopy, 3rded. (Oxford University Press, Oxford New York, 1995).
  • [8] W. Denk, J. Strickler and W. Webb, Science 248, 73 (1990).
  • [9] Z. Zalevsky, J. Nanophoton. 1, 012504 (2007).
  • [10] F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rep. 428, 53(2006).
  • [11] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, NewYork, 2008).
  • [12] R. H. Kingston, Proc. IRE 50, 472 (1962).
  • [13] N. M. Kroll, Phys. Rev. 127, 1207 (1962).
  • [14] S. A. Akhmanov and R. V. Khokhlov, Zh. Eksp. Teor. Fiz. 43, 351(1962)
  • [Sov. Phys. JETP 16, 252 (1963)].
  • [15] J.A. Giordmaine and R.C. Miller, Phys. Rev. Lett. 14, 973 (1965).
  • [16] W.R. Bosenberg, W.S. Pelouch, and C.L. Tang, Appl. Phys. Lett.55, 1952 (1989).
  • [17] H. Heffner and G. Wade, J. Appl. Phys. 29, 1321 (1958).
  • [18] P.K. Tien, J. Appl. Phys. 29, 1347 (1958).
  • [19] T. C.Marshall, Free Electron Lasers, (MacMillan Publishing, NewYork 1985).
  • [20] M.I. Shalaev, S.A.Myslivets, V.V. Slabko and A.K. Popov, OpticsLett. 36, 3861 (2011).
  • [21] A.K. Popov, M.I. Shalaev, S.A. Myslivets, V.V. Slabko and I.S.Nefedov, Appl. Phys. A 109, 835 (2012).
  • [22] A.K. Popov, M.I. Shalaev, S.A. Myslivets and V.V. Slabko, Appl.Phys. A 115, 523 (2014).
  • [23] C.S. Hsu, J. Appl. Mechanics 30, 367 (1963).
  • [24] A.H. Nayfen and D.T. Mook, J. Acoust. Soc. America 62, 375(1977).
  • [25] A.H. Nayfen, Nonlinear Interactions: Analytical, Computationaland Experimental Methods, (2000) Wiley.
  • [26] J. G. Vioque, A. R. Champneys, and M. Truman, Bol. Soc. Esp.Mat. Apl. 51, 63 (2010).
  • [27] A. A. Svidzinsky, L. Yuan, and M. O. Scully, Phys. Rev. X 3,041001 (2013).
  • [28] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden,Science 312, 892 (2006).
  • [29] S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M.Shalaev, Opt. Lett. 34, 3478 (2009).
  • [30] B. Edwards, A. Alú, M. E. Young, M. Silveirinha, and N. Engheta,Phys. Rev. Lett. 100, 033903 (2008).
  • [31] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305,788 (2004).
  • [32] S. A. Ramakrishma, Rep. Prog. Phys. 68, 449 (2005).
  • [33] Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011).
  • [34] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEETrans. Microwave Theory Tech. 47, 2075 (1999).
  • [35] A. Rose, S. Larouche, and D. R. Smith, Phys. Rev. A 84, 053805(2011).
  • [36] A. Rose and D. R. Smith, Opt. Mater. Express 1, 1232 (2011).
  • [37] A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
  • [38] A. Rose, D. Huang, and D. R. Smith, Phys. Rev. Lett. 107, 063902(2011).
  • [39] H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, andX. Zhang, Science 342, 1223 (2013).
  • [40] C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta and A.Alù, Phys. Rev. B 85, 045129 (2012).
  • [41] D. Huang, A. Rose, E. Poutrina, S. Larouche, and D. R. Smith,Appl. Phys. Lett. 98, 204102 (2011).
  • [42] M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, Phys.Rev. A 84, 063826 (2011).
  • [43] N. Lazarides, M. Eleftheriou, and G. P. Tsironis, Phys. Rev. Lett.97, 157406 (2006).
  • [44] Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, Phys. Rev. Lett. 99,153901 (2007).
  • [45] A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. Lett.91, 037401 (2003).
  • [46] D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, and M. V. Gorkunov,Appl. Phys. Lett. 91, 144107 (2007).
  • [47] A. K. Popov and V. M. Shalaev, Opt. Lett. 31, 2169-2171 (2006).
  • [48] N. M. Litchinitser and V. Shalaev, Nat. Photonics 3, 75 (2009).
  • [49] E. Poutrina, S. Larouche, and D. R. Smith, Opt. Commun. 283,1640 (2010).
  • [50] Y. Ding and J. Khurgin, IEEE J. QuantumElectron. 32, 1574 (1996).
  • [51] A.M. Steinberg, P.G. Kwiat and R.Y. Chiao, Phys. Rev. Lett. 71,708 (1993).
  • [52] S. Longhi, M. Marano, M. Belmonte and P. Laporta, IEEE J. Sel.Top. Quantum Electron. 9, 4 (2003).
  • [53] L.V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London)397, 594 (1999).
  • [54] C. Liu, Z. Dutton, C. H. Behroozi, and L.V. Hau, Nature (London)409, 490 (2001).
  • [55] M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M.Lukin, Y. Rostovtsev, E. Fry and M. Scully, Phys. Rev. Lett. 82,5229 (1999).
  • [56] D.F. Phillips, A. Fleischhauer, A. Mair and R.L. Walsworth, Phys.Rev. Lett. 86, 783 (2001).
  • [57] A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A.Musser, B.S. Ham and P.R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
  • [58] Q. Yang, J.T Seo, B. Tabibi and H. Wang, Phys. Rev. Lett. 95,063902 (2005).
  • [59] W. Schleich and co-workers have developed an insightful analysisof the QASER amplification mechanism based on the negativemass approach. We thank Prof. Schleich for sharing hiswork with us.
  • [60] X. Zhang and A.A. Svidzinsky, Phys. Rev. A 88, 033854 (2013).
  • [61] P.H. Tsao, Am. J. Phys. 61, 823 (1993).
  • [62] L.D. Landau and E.M. Lifshitz, Electrodynamics of ContinuousMedia, Pergamon Press (1960) p. 334.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_coph-2015-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.