Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 1 (48) | 1-35
Tytuł artykułu

Covid-19 Led to Price Slumps in the German Stock Market. Is Sentiment Applicable as an Explanatory Factor?

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Explaining and forecasting returns and other statistical moments of returns in the stock market have always been critical challenges. Recent studies postulate a relation between investor sentiment and future stock market returns. Supported by evidence from other countries, this study explores the statistical moments of stock returns in Germany and analyses to what extent an explanation can be found through investor sentiment. The recent COVID-19 induced market distortions provide an opportunity to investigate the suitability of predictive sentiment-based analyses. These are presented in this study and appear to be meaningful. The main concept behind the sentiment-based return explanation is built on the assumption that stock returns are linked to investor psychology. This theory often serves as an explanation for market movements that cannot be explained by fundamental data which are directly linked to stocks. However, the extraction of various sentiment proxies for further analysis in statistical models remains challenging. Problems occur because sentiment proxies do not have a constant influence and depend greatly on what currently drives the market. Furthermore, the correlation between sentiment indicators varies over time, especially in times of market distress. In this study, 73 sentiment indicators were examined in the aggregate with regard to the explainability of future stock market return distribution moments such as mean, variance, skewness, and kurtosis. This study examines 169 one-month periods from 2006 to 2020 and shows a potential solution to these challenges by applying a neural network based on long short-term memory (LSTM) neurons. The authors were able to identify a good model fit and reasonable forecasting power, which seem to work particularly well in trend forecasting. The results can be valuable in the area of portfolio risk management.(original abstract)
Rocznik
Numer
Strony
1-35
Opis fizyczny
Twórcy
  • Universidad Católica San Antonio de Murcia, Murcia, Spain
  • FOM University of Applied Sciences, Frankfurt am Main, Germany
Bibliografia
  • Albulescu, C. T., COVID-19 and the United States financial markets' volatility, Finance Research Letters, 38, 101699, 2021.
  • Al-Nasseri, A., Ali, M. F., Tucker, A., Investor sentiment and the dispersion of stock returns: Evidence based on the social network of investors, International Review of Financial Analysis, 78, 101910, 2021.
  • Baker, M., Wurgler, J. Investor sentiment and the cross-section of stock returns, Journal of Finance, 61(4), pp. 1645-1680, 2006.
  • Baker, M., Wurgler, J., Investor sentiment in the stock market, Journal of Economic Perspectives, 21(2), pp. 129-152, 2007.
  • Barber, B., Odean, T., The behavior of individual investors, Elsevier (2), 2013.
  • Barber, B., Odean, T., All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors, Review of Financial Studies, 21(2), pp. 785-818, 2008.
  • Barberis, N., Shleifer, A., Vishny, R. W., A Model of investor sentiment, Journal of Financial Economics, 49(3), pp. 307-343, 1998.
  • Bradshaw, M. T., How do analysts use their earnings forecasts in generating stock recommendations?, The Accounting Review,79 (1), pp. 25-50, 2004.
  • Broadstock, D. C., Zhang, D., Social-media and intraday stock returns: The pricing power of sentiment, Finance Research Letters, 30(C), pp. 116-123, https://ideas.repec.org/a/eee/finlet/v30y2019 icp 116-123.html, 2019.
  • Brown, S. J., Goetzmann, W. N., Hiraki, T., Shirishi, N., Watanabe, M., Investor sentiment in Japanese and U.S. daily mutual fund flows, NBER Working Paper No. 9470, 2003.
  • Cakici, N., Topyan, K., Risk and return in Asian emerging markets. A practitioner's guide. http://gbv. eblib.com/patron/FullRecord.aspx?p=1779862. Palgrave Macmillan, Basingstoke 2014.
  • Carhart, M. M., On persistence in mutual fund performance, Journal of Finance, 52(1), p. 57, 1997.
  • Chaieb, I., Langlois, H., Scaillet, O., Time-varying risk premia in large international equity markets, Swiss Finance Institute Research Paper Series, Swiss Finance Institute (18-04). https://ideas.repec. org/p/chf/rpseri/rp1804.html, 2018.
  • Checkley, M. S., Higón, Añón, D., Alles, H., The hasty wisdom of the mob: How market sentiment predicts stock market behavior, Expert Systems with Applications, 77, pp. 256-263, 2017.
  • Daniel, K., Hirshleifer, D., Subrahmanyam, A., Investor psychology and security market under- and overreactions, Journal of Finance, 53(6), pp. 1839-1885, 1998.
  • De Bondt, W., A portrait of the individual investor, European Economic Review, 42(3-5), pp. 831-844, 1998.
  • Ebrahimi, N., Pirrong, C., The risk of skewness and kurtosis in the oil market and the cross-section of stock returns, 2018.
  • Edmans, A., García, D., Norli, Ø., Sports sentiment and stock returns, Journal of Finance, 62(4), pp. 1967-1998, 2007.
  • Fama, E. F., Efficient capital markets: A Review of theory and empirical work, Journal of Finance, 25(2), pp. 383-417, 1970.
  • Fama, E. F., Random walks in stock market prices, Financial Analysts Journal, 51(1), pp. 75-80, 1995.
  • Fama, E. F., French, K. R., Common risk factors in the returns on stocks and bonds, Journal of Financial Economics, 33(1), pp. 3-56, 1993.
  • Félix, L., Kräussl, R., Stork, P., Implied volatility sentiment: a tale of two tails, Quantitative Finance, 20(5), pp. 823-849, 2020.
  • Finter, P., Niessen-Ruenzi, A., Ruenzi, S., The impact of investor sentiment on the German stock market, Zeitschrift für Betriebswirtschaft, 82(2), pp. 133-163, 2012.
  • Gao, B., Liu, X., Intraday sentiment and market returns, International Review of Economics & Finance, 69, pp. 48-62, 2020.
  • Goetzmann, W. N., Massa, M., Rouwenhorst, K. G., Behavioral factors in mutual fund flows, Yale School of Management Working Papers, https://ideas.repec.org/p/ysm/somwrk/ysm135.html, 2000.
  • Graves, A., Supervised sequence labelling with recurrent neural networks, Springer (Studies in computational intelligence, v. 385). Heidelberg, London, 2012.
  • Grinblatt, M., Keloharju, M., What makes investors trade?, Journal of Finance, 56(2), pp. 589-616, 2001.
  • Gutierrez Pineda, J. P., Perez Liston, D., The effect of U.S. investor sentiment on cross-listed securities returns: A high-frequency approach, Journal of Risk and Financial Management, 14(10), 2021.
  • Hadi, S. K., Shabbir, A. Investor sentiment effect on stock returns in Saudi Arabia stock market, Journal of Archaeology of Egypt / Egyptology, 18(13), pp. 1096-1103. https://archives.palarch.nl/index. php/jae/article/view/8641, 2021.
  • Hengelbrock, J., Theissen, E., Westheide, Ch., Market response to investor sentiment, Journal of Business Finance & Accounting,40(7-8), pp. 901-917, 2013.
  • Heuer, J., Merkle, Ch., Weber, M., Fooled by randomness: Investor perception of fund manager skill, Review of Finance, 21(2), pp. 605-635, 2017.
  • Hilliard, J., Narayanasamy, A., Zhang, S., Market Sentiment as a Factor in Asset Pricing, SSRN Electronic Journal, 2016.
  • Hochreiter, S., Schmidhuber, J., Long short-term memory, Neural Computation, 9(8), pp. 1735-1780, 1997.
  • Hövel, E. D., Sentiment-factors and multi-factor asset pricing models. 2nd International Symposium on Economics, Finance and Econometrics. Bandirma, 2018.
  • Jackson, A., The Aggregate behaviour of individual investors, https://ssrn.com/abstract=536942, 2003.
  • Jiang, B., Zhu, H., Zhang, J., Yan, C., Shen, R., Investor sentiment and stock returns during the COVID-19 pandemic, Frontiers in Psychology,12, 2021.
  • Kahneman, D., Tversky, A., Prospect theory: An analysis of decision under risk, Econometrica, 47(2), p. 263-292, 1979.
  • Kaplanski, G., Levy, H., Sentiment and stock prices: The case of aviation disasters, Journal of Financial Economics, 95(2), pp. 174-201, 2010.
  • Karim, F., Majumdar, S., Darabi, H., Chen, S., LSTM fully convolutional networks for time series classification, IEEE Access, pp. 1662-1669, 2018.
  • Khan, K. I., Naqvi, S. M., Waqar, A., Ghafoor, M. M., Akash, R. S. I., Sustainable portfolio optimization with higher-order moments of risk, Sustainability, 12(5), p. 2006, 2020.
  • Kim, W., Kim, Y. M., Kim, T.-H., Bang, S., Multi-dimensional portfolio risk and its diversification: A note, Global Finance Journal, 35, pp. 147-156, 2018.
  • Kommer, G., Souverän investieren mit Indexfonds und ETFs. Wie Privatanleger das Spiel gegen die Finanzbranche gewinnen. 5., vollständig aktualisierte Auflage, [Investing confidently with index funds and ETFs. How private investors win the game against the financial industry. 5th, completely updated edition.], Campus Verlag, Frankfurt am Main, New York, 2018.
  • Kozak, S., Nagel, S., Santosh, S., Interpreting factor models, Journal of Finance, 73(3), pp. 1183-1223, 2018.
  • Krinitz, J., Alfano, S., Neumann, D., How the market can detect its own mispricing - A sentiment index to detect irrational exuberance, Proceedings of the 50th Hawaii International Conference on System Sciences, https://pdfs.semanticscholar.org/13f3/c6a06e0911250d8261b9e066be3368f63 666.pdf, 2017.
  • Kumar, A., Lee, Ch. M. C., Retail investor sentiment and return comovements, Journal of Finance, 61(5), pp. 2451-2486, 2006.
  • Lakonishok, J., Shleifer, A., Vishny, R. W., Contrarian investment, extrapolation, and risk, Journal of Finance, 49 (5), pp. 1541-1578, 1994.
  • Lee, Ch., Shleifer, A., Thaler, R., Investor sentiment and the closed-end fund puzzle, Journal of Finance,46 (1), pp. 75-109, 1991.
  • Li, X., Wu, P., Wang, W., Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong, Information Processing & Management, 57(5), 102212, 2020.
  • Long, J. B. de, Shleifer, A., Summers, L., Waldmann, R., Noise trader risk in financial markets, Journal of Political Economy, 98(4), pp. 703-738, 1990.
  • Malandri, L., Xing, F. Z., Orsenigo, C., Vercellis, C., Cambria, E., Public mood-driven asset allocation: The importance of financial sentiment in portfolio management, Cognitive Computation, 10(6), pp. 1167-1176, 2018.
  • Mensi, W., Sensoy, A., Vo, X. V., Kang, S. H., Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices, Resources Policy, 69, 101829, 2020.
  • Merville, L. J., Xu, Y., The changing factor structure of equity returns, Working Paper, University of Texas, 2002.
  • Odean, T., Do investors trade too much?, https://ssrn.com/abstract=94143, 1998.
  • Qiu, L., Welch, I., Investor sentiment measures, National Bureau of Economic Research, 2004.
  • Sreelakshmi, R., Sinha, A., Mandal, S. K., COVID-19 related uncertainty, investor sentiment and stock returns in India, https://mpra.ub.uni-muenchen.de/109549/, 2021.
  • Russell, T., Thaler, R., The relevance of quasi rationality in competitive markets, American Economic Review, 75, pp. 1071-1082, 1985.
  • Seungho, L. S., Feature investigation for stock returns prediction using XGBoost and deep learning sentiment classification, CMC Senior Theses (2715), 2021.
  • Shen, D., Liu, L., Zhang, Y., Quantifying the cross-sectional relationship between online sentiment and the skewness of stock returns, Physica A: Statistical Mechanics and its Applications, 490(C), pp. 928-934, 2018.
  • Shiller, R. J., Kon-Ya, F., Tsutsui, Y., Why did the Nikkei crash? Expanding the scope of expectations data collection, Review of Economics and Statistics, 78(1), p. 156-164, 1996.
  • Singh, H., Yadav, Y., Does COVID-19 impact market sentiment and stock returns? Evidence from India, Practitioner Articles & Resources eJournal, 2021.
  • Soydaner, D., A comparison of optimization algorithms for deep learning, International Journal of Pattern Recognition and Artificial Intelligence, 2052013, 2020.
  • Steyn, D. H. W., Greyling, T., Rossouw, S., Mwamba, J. M., Sentiment, emotions and stock market predictability in developed and emerging markets, GLO Discussion Paper Series (502), Global Labor Organization. https://ideas.repec.org/p/zbw/glodps/502.html, 2020.
  • Szczygielski, J. J., Bwanya, P. R., Charteris, A., Brzeszczyński, J., The only certainty is uncertainty: An analysis of the impact of COVID-19 uncertainty on regional stock markets, Finance Research Letters, 101945, 2021.
  • Tiwari, A., Bathia, D., Bouri, E., Gupta, R., Investor Sentiment Connectedness: Evidence from Linear and Nonlinear Causality Approaches, University of Pretoria, Department of Economics, 201814, 2018.
  • Trichilli, Y., Abdelhédi, M., Boujelbène Abbes, M., The thermal optimal path model: Does Google search queries help to predict dynamic relationship between investor's sentiment and indexes returns?, Journal of Asset Management, 21(3), pp. 261-279, 2020.
  • Tversky, A., Kahneman, D., Availability: A heuristic for judging frequency and probability, Cognitive Psychology, 5(2), pp. 207-232, 1973.
  • Zaremba, A., Szyszka, A., Long, H., Zawadka, D., Business sentiment and the cross-section of global equity returns, Pacific-Basin Finance Journal, 61, 101329, 2020.
  • Zha, W., Research on effects of Chinese investor sentiment on stock return - A study on Shanghai A-share market research, 3rd International Conference on Society Science and Economics Development, ICSSED 2018.
  • Zhang, D., Hu, M., Ji, Q., Financial markets under the global pandemic of COVID-19, Finance Research Letters 36, 101528, 2020.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171649142
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.