Warianty tytułu
Języki publikacji
Abstrakty
Every real-estate related investment decision making process calls for the careful analysis of available information even though it is often carried out in conditions of uncertainty. The paper attempts to minimize the impact of the factor on the quality of real estate investment decisions through the proposal of application of tools based on the simulation of the process of natural selection and biological evolution. The aim of the study is to analyze the potential of methodology based on genetic algorithms (GA) to build automated valuation models (AVM) in uncertainty conditions and support investment decisions on the real estate market. The developed model facilitates the selection of properties adequate to the adopted assumptions, i.e. individuals best suited to the environment. The tool can be used by real estate investment advisors and potential investors on the market to predict future processes and the proper confrontation of past events with planned events. Even though genetic algorithms are tools that have already found particular application on real estate market, there are still areas that need further studies in the case of more effective uses. The obtained results allow for the possibilities and barriers of applying GA to real estate market analyses to be defined. (original abstract)
Czasopismo
Rocznik
Numer
Strony
1-14
Opis fizyczny
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Poland
autor
- Adamiczka Consulting
autor
- Independent researcher
Bibliografia
- Adamowicz, M. & Janulewicz, P. (2012). Wykorzystanie metod wielowymiarowych w określeniu pozycji konkurencyjnej gminy na przykładzie województwa lubelskiego [The use of multi dimensional methods in defining the competitive position f the community on the example Lubelskie voivodeship]. Metody ilościowe w badaniach ekonomicznych, 13(1), 17 - 28.
- Ahn, J. J., Byun, H. W., Oh, K. J., & Kim, T. Y. (2012). Using ridge regression with genetic algorithm to enhance real estate appraisal forecasting. Expert Systems with Applications, 39(9), 8369-8379. https://doi.org/10.1016/j.eswa.2012.01.183
- Andrejkova, G., Marčišinová, K. & Kudela, K. (2019). Genetic algorithms in the prediction of geomagnetic storms. Awange, J., Palancz, B., Lewis, R., & Volgyesi, L. (2018). Genetic algorithms. Mathematical Geosciences. Springer. https://doi.org/10.1007/978-3-319-67371-4
- Bąk, A. (2016). Porządkowanie liniowe obiektów metodą hellwiga i topsis - analiza porównawcza [Linear ordering of objects using hellwig and topsis methods a comparative analysis]. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 426, 22 - 31. https://doi.org/10.15611/pn.2016.426.02
- Bertalanffy, L. (1984). Ogólna teoria systemów [General syste theory]. PWN.
- Brzezicka, J. (2016). Znaczenie heurystyki zakotwiczenia i dostosowania w procesie wartościotwórczym na rynku nieruchomości [Significance of anchoring and adjustent heuristic in the proces of value creaton on the real estate market]. Acta Scientiarum Polonorum. Administratio Locorum, 15(1), 31-44. https://doi.org/10.31648/aspal.480
- Brzezicka, J., Łaszek, J., Olszewski, K., & Waszczuk, J. (2019). Analysis of the filtering process and the ripple effect on the primary and secondary housing market in Warsaw, Poland. Land Use Policy, 88, 104098. Advance online publication. https://doi.org/10.1016/j.landusepol.2019.104098
- Burnside, C., Eichenbaum, M., & Rebelo, S. (2016). Understanding Booms and Busts in Housing Markets. Journal of Political Economy, 124(4), 1088-1147. https://doi.org/10.3386/w16734
- Chodak, G., & Kwaśnicki, W. (2002). Zastosowanie algorytmów genetycznych w prognozowaniu popytu (Application of Genetic Algorithms in Demand). Gospodarka Materiałowa i Logistyka, 4, 2-7.
- Cierpisz, S., & Kowalik, S. (2000). Zastosowanie algorytmu genetycznego do optymalizacji układu technologicznego produkcji mieszanki węgla [Application of genetic algorithm to optimize the proces of coal blend production]. Mechanizacja i Automatyzacja Górnictwa, 12, 5-11.
- Czech, P. (2007). Wykorzystanie algorytmów genetycznych do doboru wejść klasyfikatora uszkodzeń zębów kół przekładni opartego na sieci neuronowej PNN oraz krótkoczasowej transformacie Fouriera [The use of genetic algorithms in the task of choosing inputs for PNN neural network classifier of faults of gera - tooth which used inputs from STFT analysis]. Problemy eksploatacji, 3, 51-70.
- Czechowska, K. (2014). Wybrane uwarunkowania podejmowania decyzji inwestycyjnych na rynku nieruchomości - ujęcie behawioralne [Selected Determinants of Investment Decision on the Real Estate Markets - Behavioral Approach]. Studia i Prace Wydziały Nauk Ekonomicznych i Zarządzania Uniwersytetu Szczecińskiego, 36(1), 13-25.
- d'Amato, M., Źróbek, S., Renigier-Biłozor, M., Walacik, M., & Mercadante, G. (2019). Valuing the effect of the change of zoning on underdeveloped land using fuzzy real option approach. Land Use Policy, 86, 365-374. https://doi.org/10.1016/j.landusepol.2019.04.042
- Del Giudice, V., De Paola, P., & Forte, F. (2017). Using Genetic Algorithms for Real Estate Appraisals. Buildings, 7(2), 31. https://doi.org/10.3390/buildings7020031
- Del Giudice, V., De Paola, P., Forte, F., & Manganelli, B. (2017). Real Estate Appraisals with Bayesian Approach and Markov Chain Hybrid Monte Carlo Method: An Application to a Central Urban Area of Naples. Sustainability, 9(11), 2138. https://doi.org/10.3390/su9112138
- Dubinskas, P., & Urbšienė, L. (2017). Investment portfolio optimalization by applying a genetic algorithm - based approach. Ekonomika (Nis), 96(2), 66-78. https://doi.org/10.15388/Ekon.2017.2.10998
- European Mortgage Federation and European AVM Alliance. (2016). EMF/EAA joint paper on the use of automated valuation models in Europe.
- European Valuation Standards. (2017). EVGN11 The Valuer's Use of Statistical Tools. TEGoVA.
- Figielska, E. (2006). Algorytmy ewolucyjne i ich zastosowania. Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki, 1, 81-92.
- Goldberg, D. E. (1989). Genetic algorithms in search optimalization and machine learning. Addison - Wesley Longman Publishing.
- Gu J., Zhu, M., & Jiang, L. (2011). Housing price forecasting based on genetic algorithm and support vector machine. Expert Systems with Applications, 38(4), 3383-3386. https://doi.org/10.1016/j.eswa.2010.08.123
- Helbich, M., Brunauer, W., Vaz, E., & Nijkamp, P. (2014). Spatial heterogeneity in hedonic house price models: The case of Austria. Urban Studies (Edinburgh, Scotland), 51(2), 390-411. https://doi.org/10.1177/0042098013492234
- IAAO. (2018). Standard on Automated Valuation Models, Approved September 2003, Revised July 2018.
- International Valuation Standards. (2005). International Valuation Standards (7th ed.).
- Janowski, A., Bobkowska, K., & Szulwic, J. (2018). 3D modelling of cylindrical-shaped objects from lidar data-an assessment based on theoretical modelling and experimental data. Metrology and Measurement Systems, 25(1), 47-56. https://doi.org/10.24425/118156
- Juan, Y., Kim, J. H., Roper, K., & Castro-Lacouture, D. (2009). GA-based decision support system for housing condition assessment and refurbishment strategies. Automation in Construction, 18(4), 394- 401. https://doi.org/10.1016/j.autcon.2008.10.006
- Kaklauskas, A., Zavadskas, E. K., Bardauskienė, D., &Dargis, R. (2015). Sustainable Development of Real Estate: monograph. Vilnius Technika. https://doi.org/10.3846/2336-M
- Kauko, T. (2017). Pricing and Sustainability of Urban Real Estate. Routledge.
- Kauko, T., & d'Amato, M. (2008). Mass Appraisal Mathods, An interpersonal perspective for property valuers. Wiley-Blackwell., https://doi.org/10.1002/9781444301021
- Kontrimas, V., & Verikas, A. (2011). The mass appraisal of the real estate by computational intelligence. Applied Soft Computing, 11(1), 443-448. https://doi.org/10.1016/j.asoc.2009.12.003
- Kou, G., Lu, Y., Peng, Y., & Shi, Y. (2012). Evaluation of classification algorithms using MCDM and rank correlation. International Journal of Information Technology & Decision Making, 11(01), 197-225. Advance online publication. https://doi.org/10.1142/S0219622012500095
- Kotowski, S. (2008). Analiza algorytmów genetycznych jako układów dynamicznych. PhD thesis, Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, Warszawa, Poland.
- Kumar, S., Jain, S., & Sharma, H. (2018). Genetic Algorithms. In N. Nhu Gia (Ed.), Anand, N., Dac - Nhuong, L (pp. 27-52). Advances in Swarm Intelligence for Optimizing Problems in Computer Science.
- Lee, I. (2018). Modern Genetic Algorithms. Korea Research Institute of Standards and Science, 8 - 11. https://doi.org/10.3938/PhiT.27.002
- Levitt, S. D., & Syverson, Ch. (2008). Market Distortions When Agents Are Better Informed: The Value of Information in Real Estate Transactions. The Review of Economics and Statistics, 90(4), 599-611. https://doi.org/10.1162/rest.90.4.599
- Lin, Ch., Lee, I., & Wu, M. (2019). Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems. Robotics and Computerintegrated Manufacturing, 58, 196-207. https://doi.org/10.1016/j.rcim.2019.01.005
- Ławrynowicz, A. (2011). Genetic algorithms for solving scheduling problems in manufacturing sysmems. The Journal of Warsaw University of Technology, 3(2), 7-26. https://doi.org/10.2478/v10238-012-0039-2
- Matti, M. S., & Khorsheed Al-Sulaifanie, A. (2018). Wavelet Denoising Based on Genetic Algorithm. In 2018 International Conference on Advanced Science and Engineering, Duhok, Iraq (pp. 75 - 80). https://doi.org/10.1109/ICOASE.2018.8548814
- Omiotek, Z., & Wójcik, W. (2014). Zastosowanie metody Hellwiga do redukcji wymiaru przestrzeni cech obrazów USG tarczycy [The use of Hellwig's method for dimension reduction in feature space of thyroid ultrasound images]. Informatyka, Automatyka. Pomiary w Gospodarce i Ochronie Środowiska, 4(3), 14-17. https://doi.org/10.5604/20830157.1121333
- Pereira, R. (2000). Genetic Algorithm Optimization for Finance and Investments. MPRA Paper 8610. University Library of Munich.
- Rao, R. C. (1994). Statystyka i prawda [Statistics and truth]. Wydawnictwo Naukowe PWN.
- Renigier-Biłozor, M., & Biłozor, A. (2016). Informatio Capacity Database in the Rating Model on the Basis of Polish and Italian Real Estate Markets. Real Estate Management and Valuation, 24(3), 40-51. https://doi.org/10.1515/remav-2016-0020
- Renigier-Biłozor, M., Biłozor, A., & d'Amato, M. (2018). Residential market ratings using fuzzy logic decision-making procedures. Economic Research Journal, 31(1), 1758-1787. https://doi.org/10.1080/1331677X.2018.1484785
- Renigier - Biłozor, M., Biłozor, A. & Wiśniewski, R. (. (2017). Rating engineering of real estate markets as the condition of urban areas assessment. Land Use Policy, 61, 511-525. https://doi.org/10.1016/j.landusepol.2016.11.040
- Rosienkiewicz, M. (2012). Porównanie metod Akaike i Hellwiga w zakresie efektywności konstrukcji modelu regresyjnego [Efficiency comparison of Akaike and Hellwig methods in constructing regression model]. Wiadomości statystyczne, 10, 27 - 43.
- Rutkowski, L. (2009). Metody i techniki sztucznej inteligencji. Wydawnictwo Naukowe PWN.
- Stokey, N. L. (2016). Wait-and-See: Investment Options under Policy Uncertainty. Review of Economic Dynamics, 21, 246-265. https://doi.org/10.1016/j.red.2015.06.001
- Su, D., Xin, L., Lobonţ, O., & Yanping, Z. (2016). Economic Policy Uncertainty and Housing Returns in Germany. Journal of Economics and Business, 34(1), 43-61.
- TEGoVA The European Group of Valuers Associations. (2016). European Valuation Standards: Automated Valuation Models (AVMs).
- USPAP Uniform Standards of Professional Appraisal Practice 2016 - 2017. (2016).
- Van Groenendaal, W. J. H. (2003). Group decision support for public policy planning. Information & Management, 40(5), 371-380. https://doi.org/10.1016/S0378-7206(02)00044-7
- Vandeva, E. (2012). MultiObjective Genetic Modified Algorithme (MOGMA). Cybernetics and Information Technologies, 12(2), 23-33. https://doi.org/10.2478/cait-2012-0010
- Wang, X., Wen, J., Zhang, Y., & Wang, Y. (2014). Real estate price forecasting based on SVM optimized by PSO. Optik (Stuttgart), 125(3), 1439-1443. https://doi.org/10.1016/j.ijleo.2013.09.017
- Winiczenko, R. (2008). Algorytmy genetyczne i ich zastosowania [Genetic algoritms and their applications]. Postępy Techniki Przetwórstwa Spożywczego, 1, 107-110.
- Wojarnik, G. (2015). Metody ewolucyjne w analizie zmian kursu akcji spółek giełdowych [Evolutionary methods for the analysis of the changes in price of compay stock excgange]. Zeszyty Naukowe Uniwersytetu Szczecińskiego. Studia Informatica Pomerania., 36, 39-50. https://doi.org/10.18276/si.2015.36-03
- Wu, Q., Wu, P., Zhou, L. G., Chen, H. Y., & Guan, X. J. (2018). Some new Hamacher aggregation operators under single-valued neutrosophic 2-tuple linguistic environment and their applications to multi-attribute group decision making. Computers & Industrial Engineering, 116, 144-162. https://doi.org/10.1016/j.cie.2017.12.024
- Zavadskas, E. K., Antuchevciene, J., & Chatterjee, P. (2018). Mulitple - Criteria Decision - Making (MCDM) Techniques for Busisness Processes Information Management. Informations, 10(1), 4. Advance online publication. https://doi.org/10.3390/info10010004
- Zavadskas, E. K., Antucheviciene, J., Turskis, Z., & Adeli, H. (2016). Hybrid multiple-criteria decisionmaking methods: A review of applications in engineering. Scientia Iranica, 23(1), 1-20. https://doi.org/10.24200/sci.2016.2093
- Zavadskas, E., Bausys, R., Kaklauskas, A., Ubarte, I., Kuzminske, A., & Gudiene, N. (2017). Sustainable market valuation of buildings by the single-valued neutrosophic MAMVA method. Applied Soft Computing, 57(C), 74-87. https://doi.org/10.1016/j.asoc.2017.03.040
- Zavadskas, E., Kaklauskas, A., Turskis, Z., & Tamošaitienė, J. (2008). Selection of the effective dwelling house walls by applying attributes values determined at intervals. Journal of Civil Engineering and Management, 14(2), 85-93. https://doi.org/10.3846/1392-3730.2008.14.3
- Zavadskas, E., & Turskis, Z. (2011). Daugiatiksliai sprendimų priėmimo metodai ekonomikoje: Apžvalga [Multiple criteria decision making (mcdm) methods in economics: an overview]. Technological and Economic Development of Economy, 17(2), 397-427. https://doi.org/10.3846/20294913.2011.593291
- Ziółkowski, P., & Niedostatkiewicz, M. (2019). Machine Learning Techniques in Concrete Mix Design. Materials (Basel), 12(8), 1256. https://doi.org/10.3390/ma12081256 PMID:30999557
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171612659