Warianty tytułu
Języki publikacji
Abstrakty
The research for novel power conversion topologies and the development of cutting-edge power component technologies are driven by the demand for renewable and much more efficient electricity generation, delivery, and conversion. Simulation and Analysis High Voltage Gain DC-DC Converter with Double Voltage Booster Switched Inductor for PV Applications are analyzed in this paper. Multilevel boost converter topologies recently reintroduced, are gaining popularity as a solution for industrial and transportation power systems because they enable the use of innovative, efficient, but relatively low voltage low-voltage devices at greater voltage and power levels. there is only one power switch on the converter that is planned here, three diodes, two capacitors, and two inductors to achieve ultra-high gain with better efficiency. High voltage gain, minimal switch stress, and the ability to lessen input-current ripple and capacitor voltage ripple are all benefits of the topology. When it switches complementary, the capacitors' ripple is reduced, which lowers the size requirement for the capacitors. A 12V, 500 watts prototype was analyzed, simulated and designed. at a duty cycle of 0.75 it is achieved high DC-DC gain i.e 19 and efficiency 93%. The practicality of the converter will be demonstrated by the close agreement between the analysis and simulation findings.
Słowa kluczowe
Rocznik
Tom
Strony
1--11
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
autor
- Department of EEE, Chaitanya (Deemed to be University) Warangal, Telangana, India, nagaraju.addagatla@gmail.com
autor
- Department of EEE, Chaitanya (Deemed to be University) Warangal, Telangana, India, rajender_eee@chaitanya.edu.in
Bibliografia
- 1. Severns R., Bloom G.E. Modern DC-TO-DC switch mode power converter circuits. Van Nostrand Reinhold Co 1985.
- 2. Kolar J.W., Ertl H., Zach F.C. Realization considerations for unidirectional three-phase PWM rectifier system with low effects on the mains, 6th International Conference on Power Electronics and Motion Control 1990; 560–565.
- 3. Zhang M.T., Yiang Y., Lee F.C., Jovanovich M.M. Single-Phase three-level boost power factor correction converter, Proc. IEEE Applied Power Electronics Conf. APEC 1995; 434–439.
- 4. Corzine K.A., Majeethia S.K. Analysis of a Novel Four-Level DC/DC Boost Converter. IEEE Trans. on Industrial Applications 2000; 36: 1342–1350.
- 5. Barbosa P., Canales F., Lee F. Analysis and evaluation of the two switches three-level boost rectifier, PESC 2001; 1659–1664.
- 6. Yao G., Hu L., Liu Y., Chen A., He X. Interleaved Three-Level Boost Converter with Zero Diode Reverse-Recovery Loss, APEC 2004.
- 7. Forest F., Meynard T.A., Faucher S., Pichardeau F., Huselstein J.-J., Joubert C. Using the multilevel imbricated cells topologies in the design of lowpower power-factor-corrector converters, IEEE Trans. In Power Electronics 2005; 52(1): 151–161.
- 8. Meili J., Srinivas P., Serpa L., Steimer P.K., Kolar J.W. Optimized pulse patterns for the 5-level ANPC converter for high-speed high-power applications, IECON 2006.
- 9. Yao G., Ma M., Deng Y., Li W., He X. An improved ZVT PWM three Level three-leveller for power factor pre-regulator. PESC 2007; 768–772.
- 10. Kwon J.M., Kwon B.H., Nam K.H. Three-phase photovoltaic system with three-level boosting MPPT control, IEEE Trans. on Power Electronics 2008; 23(5).
- 11. Deblecrer O., Moretti A., Vallee F. Comparative analysis of two zero current switching isolated DC-DC converters for auxiliary railway supply. International Symposium on Power Electronics – SPEEDAM 2008; 1186–1193.
- 12. Lai C.-M., Cheng Y.-H., Hsieh M.-H., Lin Y.-C. Development of a Bidirectional DC/DC Converter with Dual-Battery Energy Storage for Hybrid Electric Vehicle System. IEEE Trans. Veh. Technol. 2017; 67: 1036–1052.
- 13. Ruan X., Li B., Chen Q., Tanand S-C., Tanande C. Fundamental considerations of three-level DC-DC converter Topologies, Analyses, and Control, IEEE Trans. on Circuits and Systems 2008; 3733–3743.
- 14. Buttil G., Biela J. Novel high efficiency multilevel DC-DC boost converter topologies and modulation strategies, EPE’11, 1–10.
- 15. Agamy M.S., Harfman-Todorovic M., Elasser A., Sabate J.A., Steigerwald R.L., Jiang Y., Essakiappan S. DC-DC converter topology assessment for large scale distributed plant architectures, ECCE 2011; 764–769.
- 16. Haddad K. Three level DC-DC converters as efficient interface in two stage PV power systems, Energy Tech, IEEE, Cleveland, OH 2012; 1–6.
- 17. Meleshin V.I., Zhiklenkov D.V., Ganshin A.A. Efficient three-level boost converter for various applications. EPE-PEMC, ECCE Europe, Novi Sad, Serbia 2012; 9–1 to 9–8.
- 18. Zeng Y., Li H., Wang W., Zhang B., Zheng T.Q. Cost-effective clamping capacitor boost converter with high voltage gain. IET Power Electron., 2020; 13(9): 17751786. DOI: 10.1049/ietpel.2019.1291
- 19. Bhaskar M.S., Almakhles D.J., Padmanaban S., Holm-Nielsen J.B., Kumar A.R., Masebinu S.O. Triple-mode active-passive parallel intermediate links converter with high voltage gain and edibility in selection of duty cycles, IEEE Access 2020; 8: 134716134727. DOI: 10.1109/ACCESS.2020.3010594.
- 20. Nguyen A.D., Jason Lai J.-S., Chiu H.-J. Analysis and implementation of a new non-isolated high-voltage-gain boost converter, in Proc. IEEE Energy Convers. Congr. Exposit. Baltimore, MD, USA, Sep. 2019; 1251–1255. DOI: 10.1109/ECCE.2019.8913039.
- 21. Shahir F.M., Babaei E., Farsadi M. Extended topology for a boost DCDC converter, IEEE Trans. Power Electron., 2019; 34(3): 2375–2384. DOI: 10.1109/TPEL.2018.2840683.
- 22. Farzin A., Etemadi M., Baghramian A. A new high-step-up DC DC converter using three-windings transformer and soft-switching for use in photovoltaic systems, in Proc. 10th Int. Power Electron., Drive Syst. Technol. Conf. (PEDSTC), Shiraz, Iran, Feb. 2019; 207212. DOI: 10.1109/PEDSTC.2019.8697846.
- 23. Nguyen M., Duong T., Lim Y., Kim Y. Isolated boost DC-DC converter with three switches, IEEE Trans. Power Electron. 2018; 33(2): 1389–1398. DOI: 10.1109/TPEL.2017.2679029.
- 24. Nagaraju A., Rajender B. A transformer less high gain multi stage boost converter fed h-bridge inverter for photovoltaic application with low component count, (in press). Journal of Engineering Science & Technology.
- 25. Lee S.-W., Do H.-L. Quadratic boost DC-DC converter with high voltage gain and reduced voltage stresses, IEEE Trans. Power Elec- tron. 2019; 34(3): 23972404. DOI: 10.1109/TPEL.2018.2842051.
- 26. Jahangiri H., Mohammadpour S., Ajami A. A high step-up DC-DC boost converter with coupled inductor based on quadratic converters, in Proc. 9th Annu. Power Electron., Drives Syst. Technol. Conf. (PEDSTC), Tehran, Iran 2018; 2025. DOI: 10.1109/PEDSTC.2018.8343765.
- 27. Khosroshahi A.E., Wang L., Dadashzadeh H., Ardi H., Farakhor A., Shotorbani A.M. A two-stage coupled-inductor-based cascaded DC-DC converter with a high voltage gain, in Proc. IEEE Can. Conf. Electr. Comput. Eng. (CCECE), Edmonton, AB, Canada 2019; 1–5. DOI: 10.1109/CCECE.2019.8861768.
- 28. Cardos, V., Junior, S.L., Lazzarin, T.B., Wattrich, G. Double boost–Fly back converter. IET Power Electron. 2020; 13(6): 1163–1171.
- 29. Zeng, Y., et al. A cost-effective clamping capacitor boost converter with high voltage gain. IET Power Electron. 2020; 13(9): 1775–1786.
- 30. Mizani A, Ansari SA, Shoulaie A, Davidson JN, Foster MP. Single-active switch high-voltage gain DC–DC converter using a non-coupled inductor. IET Power Electron. 2021; 14: 492–502. DOI: 10.1049/pel2.12007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5a2cd8b7-1d8f-4673-af4d-da0a014ac365