Warianty tytułu
Języki publikacji
Abstrakty
The Helmholtz equation is an important differential equation. It has a wide range of uses in physics, including acoustics, electro-statics, optics, and quantum mechanics. In this article, a hybrid approach called the Shehu transform decomposition method (STDM) is im-plemented to solve space-fractional-order Helmholtz equations with initial boundary conditions. The fractional-order derivative is regarded in the Caputo sense. The solutions are provided as series, and then we use the Mittag-Leffler function to identify the exact solutions to the Helmholtz equations. The accuracy of the considered problem is examined graphically and numerically by the absolute, relative, and recur-rence errors of the three problems. For different values of fractional-order derivatives, graphs are also developed. The results show that our approach can be a suitable alternative to the approximate methods that exist in the literature to solve fractional differential equations.
Czasopismo
Rocznik
Tom
Strony
116--125
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
- Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan, adnankhantariq@ncbae.edu.pk
- National College of Business Administration & Economics, Lahore, Pakistan
autor
- Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan, imran_liaqat_22@sms.edu.pk
- National College of Business Administration & Economics, Lahore, Pakistan
- 0000-0002-5732-9689
autor
- Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan, Asmafaizan624@gmail.com
- National College of Business Administration & Economics, Lahore, Pakistan
Bibliografia
- 1. Djaouti AM, Khan ZA, Liaqat MI, Al-Quran A. A novel technique for solving the nonlinear fractional-order smoking model. Fractal and Fractional. 2024; 8(5):286. https://doi.org/10.3390/fractalfract8050286
- 2. Liaqat MI, Etemad S, Rezapour S, Park C. A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics. 2022; 7(9):16917-16948. https://doi.org/10.3934/math.2022929
- 3. Djaouti AM, Khan ZA, Liaqat MI, Al-Quran A. Existence uniqueness and averaging principle of fractional neutral stochastic differential equations in the Lp Space with the framework of the Ψ-Caputo deriv-ative. Mathematics. 2024;12(7): 1-21. https://doi.org/10.3390/math12071037
- 4. Owolabi KM, Hammouch Z. Spatiotemporal patterns in the Bel-ousov–Zhabotinskii reaction systems with Atangana–Baleanu frac-tional order derivative. Physica A: Statistical Mechanics and its Appli-cations. 2019; 523: 1072-1090. https://doi.org/10.1016/j.physa.2019.04.017
- 5. Djaouti AM, Khan ZA, Liaqat MI, Al-Quran A. A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Deriva-tives. Mathematics. 2024;12(11): 1654. https://doi.org/10.3390/math12111654
- 6. Tenreiro Machado JA. The bouncing ball and the Grünwald-Letnikov definition of fractional derivative. Fractional Calculus and Applied Analysis. 2021; 24(4): 1003-1014. https://doi.org/10.1515/fca-2021-0043
- 7. Ahmad B, Ntouyas SK, Alsaedi A. Fractional order differential sys-tems involving right Caputo and left Riemann–Liouville fractional de-rivatives with nonlocal coupled conditions. Boundary value problems. 2019(1): 1-12. https://doi.org/10.1186/s13661-019-1222-0
- 8. Sene N. Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov ex-ponents. Journal of King Saud University-Science. 2021; 33(1): 101275. https://doi.org/10.1016/j.jksus.2020.101275
- 9. Shah K, Alqudah MA, Jarad F, Abdeljawad T. Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative. Chaos, Solitons&Fractals. 2020;135: 109754. https://doi.org/10.1016/j.chaos.2020.109754
- 10. Ghanbari B, Djilali S. Mathematical and numerical analysis of a three‐species predator‐prey model with herd behavior and time frac-tional‐order derivative. Mathematical Methods in the Applied scienc-es, 2020; 43(4):1736-1752. https://doi.org/10.1002/mma.5999
- 11. Liaqat MI, Akgül A, Prosviryakov EY. An efficient method for the analytical study of linear and nonlinear time-fractional partial differen-tial equations with variable coefficients. Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2023; 27(2): 214-240. https://doi.org/10.14498/vsgtu2009
- 12. Liaqat MI, Akgül A, De la Sen M, Bayram, M. Approximate and exact solutions in the sense of conformable derivatives of quantum me-chanics models using a novel algorithm. Symmetry. 2023; 15(3): 744. https://doi.org/10.3390/sym15030744
- 13. Cheng X, Hou J, Wang L. Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving fractional sys-tem of single-walled carbon nanotube. Computational and Applied Mathematics. 2021; 40:1-17. https://doi.org/10.1007/s40314-021-01486-7
- 14. Paliathanasis A, Bogadi RS, Govender M. Lie symmetry approach to the time-dependent Karmarkar condition. The European Physical Journal C. 2022; 82(11): 987. https://doi.org/10.1140/epjc/s10052-022-10929-2
- 15. Sahoo S, Ray SS, Abdou M.A. New exact solutions for time-fractional Kaup-Kupershmidt equation using improved (G′/G)-expansion and extended (G′/G)-expansion methods. Alexandria En-gineering Journal. 2020; 59(5): 3105-3110. https://doi.org/10.1016/j.cjph.2016.10.019
- 16. Jena SK, Chakraverty S. Dynamic behavior of an electromagnetic nanobeam using the Haar wavelet method and the higher-order Haar wavelet method. The European Physical Journal Plus. 2019;134(10): 538. https://doi.org/10.1140/epjp/i2019-12874-8
- 17. Yi M, Huang J. Wavelet operational matrix method for solving frac-tional differential equations with variable coefficients. Applied Math-ematics and Computation. 2014; 230: 383-394. https://doi.org/10.1016/j.amc.2013.06.102
- 18. Cinar M, Secer A, Ozisik M, Bayram M. Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method. Optical and Quantum Electronics. 2022; 54(7): 402. https://doi.org/10.1007/s11082-022-03819-0
- 19. Atabakzadeh MH, Akrami MH, Erjaee GH. Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Applied Mathematical Modelling. 2013; 37(20-21): 8903-8911. https://doi.org/10.1016/j.apm.2013.04.019
- 20. Liaqat MI, Akgül A, Bayram M. Series and closed form solution of Caputo time-fractional wave and heat problems with the variable co-efficients by a novel approach. Optical and Quantum Electron-ics. 2024;56(2):203. https://doi.org/10.1007/s11082-023-05751-3
- 21. Naik PA, Zu J, Ghoreishi M. Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method. Chaos, Solitons & Fractals. 2020;131:109500. https://doi.org/10.1016/j.chaos.2019.109500Get rights and content
- 22. Zeidan D, Chau CK, Lu TT, Zheng WQ. Mathematical studies of the solution of Burgers' equations by Adomian decomposition meth-od. Mathematical Methods in the Applied Sciences. 2020; 43(5): 2171-2188. https://doi.org/10.1002/mma.5982
- 23. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Rabczuk T. An energy approach to the solution of partial differential equations in computational mechanics via machine learn-ing: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering. 2020; 362:112790. https://doi.org/10.1016/j.cma.2019.112790
- 24. Majeed A, Kamran M, Iqbal MK, Baleanu D. Solving time fractional Burgers’ and Fisher’s equations using cubic B-spline approximation method. Advances in Difference Equations. 2020;(1):1-15. https://doi.org/10.1186/s13662-020-02619-8
- 25. Ganji RM, Jafari H, Baleanu D. A new approach for solving multi variable orders differential equations with Mittag–Leffler ker-nel. Chaos. Solitons & Fractals. 2020; 130:109405. https://doi.org/10.1016/j.chaos.2019.109405
- 26. Eriqat T, El-Ajou A, Moa'ath NO, Al-Zhour Z, Momani S. A new attractive analytic approach for solutions of linear and nonlinear neu-tral fractional pantograph equations. Chaos. Solitons&Fractals. 2020; 138: 109957. https://doi.org/10.1016/j.chaos.2020.109957
- 27. Yüzbaşı Ş. Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Applied Mathe-matics and Computation, 2013;219(11): 6328-6343. https://doi.org/10.1016/j.amc.2012.12.006
- 28. Liaqat MI, Akgül A, Abu-Zinadah H. Analytical investigation of some time-fractional Black–Scholes models by the Aboodh residual power series method. Mathematics. 2023;11(2): 276. https://doi.org/10.3390/math11020276
- 29. Jafarian A, Mokhtarpour M, Baleanu D. Artificial neural network approach for a class of fractional ordinary differential equa-tion. Neural Computing and Applications. 2017; 28: 765-773.
- 30. Li HL, Jiang YL, Wang Z, Zhang L, Teng Z. Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network. Applied Mathematics and Computation. 2015;270: 269-277. https://doi.org/10.1016/j.amc.2015.08.043
- 31. Qureshi S, Kumar P. Using Shehu integral transform to solve frac-tional order Caputo type initial value problems. Journal of Applied Mathematics and Computational Mechanics. 2019; 18(2):75-83. https://doi.org/10.17512/jamcm.2019.2.07
- 32. Jena SR, Sahu I. A novel approach for numerical treatment of travel-ing wave solution of ion acoustic waves as a fractional nonlinear evo-lution equation on Shehu transform environment. Physica Scripta. 2023; 98(8): 085231. https://doi.org/10.1088/1402-4896/ace6de
- 33. Shah R, Saad Alshehry A, Weera W. A semi-analytical method to investigate fractional-order gas dynamics equations by Shehu trans-form. Symmetry. 2022; 14(7): 1458. https://doi.org/10.3390/sym14071458
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-81036b34-d82a-492b-bada-2fc6fde3bd77