Czasopismo
2013
|
Vol. 61, no 2
|
97--106
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We investigate two global GCH patterns which are consistent with the existence of a tall cardinal, and also present some related open questions.
Rocznik
Tom
Strony
97--106
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Department of Mathematics Baruch College of CUNY New York, NY 10010, U.S.A., awapter@alum.mit.edu
- The CUNY Graduate Center, Mathematics 365 Fifth Avenue New York, NY 10016, U.S.A.
Bibliografia
- [1] A. Apter, Indestructibility, measurability, and degrees of supercompactness, Math. Logic Quart. 58 (2012), 75–82.
- [2] A. Apter, Level by level in equivalence, strong compactness, and GCH, Bull. Polish Acad. Sci. Math. 60 (2012), 201–209.
- [3] A. Apter, On a problem of Woodin, Arch. Math. Logic 39 (2000), 253–259.
- [4] A. Apter, On some questions concerning strong compactness, Arch. Math. Logic 51 (2012), 819–829.
- [5] A. Apter and J. Cummings, Identity crises and strong compactness II: Strong cardinals, Arch. Math. Logic 40 (2001), 25–38.
- [6] A. Apter and M. Gitik, On tall cardinals and some related generalizations, Israel J. Math., to appear.
- [7] B. Cody and M. Magidor, On supercompactness and the continuum function, Ann. Pure Appl. Logic 165 (2014), 620–630.
- [8] M. Foreman and W. H. Woodin, The generalized continuum hypothesis can fail everywhere, Ann. of Math. 133 (1991), 1–35.
- [9] S.-D. Friedman and M. Golshani, Killing GCH everywhere by a cofinality-preserving forcing notion over a model of GCH, Fund. Math. 223 (2013), 171–193.
- [10] S.-D. Friedman and M. Golshani, Killing the GCH everywhere with a single real, J. Symbolic Logic 78 (2013), 803–823.
- [11] S.-D. Friedman and R. Honzik, Easton’s theorem and large cardinals, Ann. Pure Appl. Logic 154 (2008), 191–208.
- [12] M. Gitik, personal communication.
- [13] J. D. Hamkins, Tall cardinals, Math. Logic Quart. 55 (2009), 68–86.
- [14] J. D. Hamkins, The lottery preparation, Ann. Pure Appl. Logic 101 (2000), 103–146.
- [15] T. Jech, Set Theory. The Third Millennium Edition, Revised and Expanded, Springer, Berlin, 2003.
- [16] A. Kanamori, The Higher Infinite, 2nd ed., Springer, Berlin, 2003.
- [17] A. Lévy and R. Solovay, Measurable cardinals and the Continuum Hypothesis, Israel J. Math. 5 (1967), 234–248.
- [18] M. Magidor, How large is the first strongly compact cardinal? or A study on identity crises, Ann. Math. Logic 10 (1976), 33–57.
- [19] T. Menas, Consistency results concerning supercompactness, Trans. Amer. Math. Soc. 223 (1976), 61–91.
- [20] C. Merimovich, A power function with a fixed finite gap everywhere, J. Symbolic Logic 72 (2007), 361–417.
- [21] R. Solovay, Strongly compact cardinals and the GCH, in: Proceedings of the Tarski Symposium, Proc. Sympos. Pure Math. 25, Amer. Math. Soc., Providence, RI, 1974, 365–372.
- [22] M. Zeman, Inner Models and Large Cardinals, de Gruyter Ser. Logic Appl. 5, de Gruyter, Berlin, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-f5fef2eb-f272-4111-8bf8-d35ce81b1467