Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 61, no 2 | 97--106
Tytuł artykułu

Some Remarks on Tall Cardinals and Failures of GCH

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate two global GCH patterns which are consistent with the existence of a tall cardinal, and also present some related open questions.
Wydawca

Rocznik
Strony
97--106
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Department of Mathematics Baruch College of CUNY New York, NY 10010, U.S.A., awapter@alum.mit.edu
  • The CUNY Graduate Center, Mathematics 365 Fifth Avenue New York, NY 10016, U.S.A.
Bibliografia
  • [1] A. Apter, Indestructibility, measurability, and degrees of supercompactness, Math. Logic Quart. 58 (2012), 75–82.
  • [2] A. Apter, Level by level in equivalence, strong compactness, and GCH, Bull. Polish Acad. Sci. Math. 60 (2012), 201–209.
  • [3] A. Apter, On a problem of Woodin, Arch. Math. Logic 39 (2000), 253–259.
  • [4] A. Apter, On some questions concerning strong compactness, Arch. Math. Logic 51 (2012), 819–829.
  • [5] A. Apter and J. Cummings, Identity crises and strong compactness II: Strong cardinals, Arch. Math. Logic 40 (2001), 25–38.
  • [6] A. Apter and M. Gitik, On tall cardinals and some related generalizations, Israel J. Math., to appear.
  • [7] B. Cody and M. Magidor, On supercompactness and the continuum function, Ann. Pure Appl. Logic 165 (2014), 620–630.
  • [8] M. Foreman and W. H. Woodin, The generalized continuum hypothesis can fail everywhere, Ann. of Math. 133 (1991), 1–35.
  • [9] S.-D. Friedman and M. Golshani, Killing GCH everywhere by a cofinality-preserving forcing notion over a model of GCH, Fund. Math. 223 (2013), 171–193.
  • [10] S.-D. Friedman and M. Golshani, Killing the GCH everywhere with a single real, J. Symbolic Logic 78 (2013), 803–823.
  • [11] S.-D. Friedman and R. Honzik, Easton’s theorem and large cardinals, Ann. Pure Appl. Logic 154 (2008), 191–208.
  • [12] M. Gitik, personal communication.
  • [13] J. D. Hamkins, Tall cardinals, Math. Logic Quart. 55 (2009), 68–86.
  • [14] J. D. Hamkins, The lottery preparation, Ann. Pure Appl. Logic 101 (2000), 103–146.
  • [15] T. Jech, Set Theory. The Third Millennium Edition, Revised and Expanded, Springer, Berlin, 2003.
  • [16] A. Kanamori, The Higher Infinite, 2nd ed., Springer, Berlin, 2003.
  • [17] A. Lévy and R. Solovay, Measurable cardinals and the Continuum Hypothesis, Israel J. Math. 5 (1967), 234–248.
  • [18] M. Magidor, How large is the first strongly compact cardinal? or A study on identity crises, Ann. Math. Logic 10 (1976), 33–57.
  • [19] T. Menas, Consistency results concerning supercompactness, Trans. Amer. Math. Soc. 223 (1976), 61–91.
  • [20] C. Merimovich, A power function with a fixed finite gap everywhere, J. Symbolic Logic 72 (2007), 361–417.
  • [21] R. Solovay, Strongly compact cardinals and the GCH, in: Proceedings of the Tarski Symposium, Proc. Sympos. Pure Math. 25, Amer. Math. Soc., Providence, RI, 1974, 365–372.
  • [22] M. Zeman, Inner Models and Large Cardinals, de Gruyter Ser. Logic Appl. 5, de Gruyter, Berlin, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f5fef2eb-f272-4111-8bf8-d35ce81b1467
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.