Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 129, nr 4 | 329--340
Tytuł artykułu

Computing a Longest Common Palindromic Subsequence

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The longest common subsequence (LCS) problem is a classic and well-studied problem in computer science. Palindrome is a word which reads the same forward as it does backward. The longest common palindromic subsequence (LCPS) problem is a variant of the classic LCS problem which finds a longest common subsequence between two given strings such that the computed subsequence is also a palindrome. In this paper, we study the LCPS problem and give two novel algorithms to solve it. To the best of our knowledge, this is the first attempt to study and solve this problem.
Wydawca

Rocznik
Strony
329--340
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • AℓEDA group, Department of CSE, Bangladesh University of Engineering & Technology Dhaka - 1000, Bangladesh, shihab@cse.buet.ac.bd
autor
  • AℓEDA group, Department of CSE, Bangladesh University of Engineering & Technology Dhaka - 1000, Bangladesh, mahbub86@cse.buet.ac.bd
autor
  • AℓEDA group, Department of CSE, Bangladesh University of Engineering & Technology Dhaka - 1000, Bangladesh, sumaiya@cse.buet.ac.bd
  • AℓEDA group, Department of CSE, Bangladesh University of Engineering & Technology Dhaka - 1000, Bangladesh, msrahman@cse.buet.ac.bd
Bibliografia
  • [1] Bentley, J. L., Friedman, J. H.: Data Structures for Range Searching, ACM Comput. Surv., 11, December 1979, 397–409, ISSN 0360-0300.
  • [2] Breslauer, D., Galil, Z.: Finding all periods and initial palindromes of a string in parallel, Algorithmica, 14, October 1995, 355 – 366.
  • [3] Chen, K.-Y., Hsu, P.-H., Chao, K.-M.: IdentifyingApproximate Palindromes in Run-Length Encoded Strings, Proceedings of 21st International Symposium, ISAAC 2010, Jeju, Korea, December 15-17, 2010, 2010.
  • [4] Choi, C.: DNA palindromes found in cancer, Genome Biology, 6, 2005, ISSN 1465-6906.
  • [5] van Emde Boas, P.: Preserving order in a forest in less than logarithmic time, Proceedings of the 16th Annual Symposium on Foundations of Computer Science, IEEE Computer Society,Washington, DC, USA, 1975.
  • [6] Galil, Z.: Real-time algorithms for string-matching and palindrome recognition, Proceedings of the eighth annual ACM symposium on Theory of computing, 1976.
  • [7] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, New York, 1997.
  • [8] Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palindromes, Proceedings of 20th International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009., 2009.
  • [9] I, T., Shunsuke, I., Masayuki, T.: Palindrome Pattern Matching, Proceedings of 22nd Annual Symposium, CPM 2011, Palermo, Italy, June 27-29, 2011., 2011.
  • [10] Iliopoulos, C., Rahman, M.: A New Efficient Algorithm for Computing the Longest Common Subsequence, Theory of Computing Systems, 45, 2009, 355–371, ISSN 1432-4350.
  • [11] Kolpakov, R., Kucherov, G.: Searching for gapped palindromes, Theoretical Computer Science, November 2009, 5365 – 5373.
  • [12] Lange, J., Skaletsky, H., van Daalen, S. K.M., Embry, S. L., Korver, C.M., Brown, L. G., Oates, R. D., Silber, S., Repping, S., Page, D. C.: Isodicentric Y Chromosomes and Sex Disorders as Byproducts of Homologous Recombination that Maintains Palindromes, Cell, 138, September 2009, 855–869.
  • [13] Manacher,G.: A new Linear-TimeOn-Line Algorithmfor Finding the Smallest Initial Palindrome of a String, Journal of the ACM, 22, July 1975, 346 – 351.
  • [14] Martnek, T., Lexa, M.: Hardware acceleration of approximate palindromes searching, Proceedings of The International Conference on Field-Programmable Technology, 2008.
  • [15] Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient algorithms to compute compressed longest common substrings and compressed palindromes, Theoretical Computer Science, 410, March 2009, 900–913.
  • [16] Porto, A. H. L., Barbosa, V. C.: Finding Approximate Palindromes in Strings, Pattern Recognition, 2002.
  • [17] Tanaka, H., Bergstrom, D. A., Yao, M.-C., Tapscott, S. J.: Large DNA palindromes as a common form of structural chromosome aberrations in human cancers, Human Cell, 19(1), 2006, 17–23, ISSN 1749-0774
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5174d237-8fbb-4859-aa52-d8a96d60eadd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.