Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | T. 71, nr 4 | 323--333
Tytuł artykułu

Study of anti–solvents in highly reproducible perovskite solar cells

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Badanie przeciwrozpuszczalników w ogniwach słonecznych perowskitowych o wysokiej odtwarzalności
Języki publikacji
EN
Abstrakty
EN
This study applied a one–step method to prepare planar organic–inorganic hybrid heterojunction perovskite solar cells and adopted anisole, phenetole, benzyl methyl ether, and butyl ether as anti–solvents for the first time. The effects of the four anti–solvents on the performance of the perovskite thin films and the corresponding cells were investigated. In addition, the quality of perovskite thin films and the performance of cells prepared with the four anti–solvents were compared to those of cells prepared with the diethyl ether which is the most commonly used anti–solvent. The research results indicate that the surfaces of the perovskite thin films formed with benzyl methyl ether and butyl ether as anti–solvent are rough and have many voids. The weak diffraction peaks of the corresponding perovskites indicate relatively poor crystallinity. The perovskite thin films obtained using phenetole as the anti–solvent have pinholes. The perovskite thin films obtained using anisole as the anti–solvent are uniform and dense and have good crystallinity. These were compared to the perovskite cells that use diethyl ether as the anti–solvent; the open–circuit voltage increased from 1.06 V to 1.09 V; the fill factor is enhanced from 65% to 76%; the power conversion efficiency is improved from 14.53% to 16.73%, and the perovskite cell has good reproducibility.
PL
W badaniu zastosowano jednoetapową metodę przygotowania płaskich, organiczno-nieorganicznych, hybrydowych, heterozłączowych perowskitowych ogniw słonecznych i zastosowano po raz pierwszy anizol, fenetol, eter benzylowo-metylowy i eter butylowy. Zbadano wpływ czterech przeciwrozpuszczalników na osiągi cienkich warstw perowskitu i odpowiednich komórek. Ponadto jakość cienkich warstw perowskitu i wydajność komórek przygotowanych za pomocą czterech przeciwrozpuszczalników porównano z komórkami przygotowanymi za pomocą eteru dietylowego, który jest najczęściej stosowanym przeciwrozpuszczalnikiem. Wyniki badań wskazują, że powierzchnie cienkich warstw perowskitu utworzonych z eteru benzylometylowego i eteru butylowego jako przeciwrozpuszczalnika są szorstkie i mają wiele pustek. Słabe piki dyfrakcyjne odpowiednich perowskitów wskazują na stosunkowo słabą krystaliczność. Cienkie warstwy perowskitu otrzymane przy użyciu fenetolu jako przeciwrozpuszczalnika mają otwory. Cienkie warstwy perowskitu otrzymane przy użyciu anizolu jako przeciwrozpuszczalnika są jednorodne i gęste oraz mają dobrą krystaliczność. Zostały one porównane z komórkami perowskitu, które wykorzystują eter dietylowy jako przeciwrozpuszczalnik; napięcie w obwodzie otwartym wzrosło z 1,06 V do 1,09 V; współczynnik wypełnienia został zwiększony z 65% do 76%; wydajność konwersji mocy została poprawiona z 14,53% do 16,73%, a ogniwo perowskitowe ma dobrą odtwarzalność.
Wydawca

Rocznik
Strony
323--333
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi Province, China, yxwang72@163.com
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi Province, China
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi Province, China
autor
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi Province, China
autor
  • School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi Province, China
Bibliografia
  • [1] Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, (2009), 6050-6051.
  • [2] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., Grätzel, M., Park, N. G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, (2012), 591.
  • [3] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, (2013), 316-319.
  • [4] Wolf, S. D., Holovsky, J., Moon, S. J., Löper, P., Niesen, B., Ledinsky, M., Haug, F. J., Yum, J. H., Ballif, C.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance, J. Phys. Chem. Lett., 5, (2014), 1035–1039.
  • [5] Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., McGehee, M. D.: Reversible photo-induced trap formation in mixedhalide hybrid perovskites for photovoltaics, Chem. Sci., 6, (2015), 613-617.
  • [6] Song, T. B., Chen, Q., Zhou, H., Jiang, C., Wang, H. H., Yang, Y. M., Liu, Y. S., You, J. B., Yang, Y.: Perovskite solar cells: film formation and properties, J. Mater. Chem. A, 3, (2015), 9032-9050.
  • [7] Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., Snaith, H. J.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environ. Sci., 7, (2014), 982-988.
  • [8] Guo, L., Fei, C., Zhang, R., Li, B., Shen, T., Tian, J., Cao, G.: Impact of sol aging on TiO2 compact layer and photovoltaic performance of perovskite solar cell, Sci. China Mater., 59, (2016), 710-718.
  • [9] Zhao, Y., Nardes, A. M., Zhu, K.: Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics, Faraday discuss, 176, (2015), 301-312.
  • [10] Green, M. A., Baillie, A. H., Snaith, H. J.: The emergence of perovskite solar cells, Nature Photon., 8, (2014), 506-514.
  • [11] Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P. A., Mohammed, O. F., Sargent, E. H., Bakr, O. M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, 347, (2015), 519-522.
  • [12] Yin, W. J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104, (2014), 063903.
  • [13] Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Herz, L. M., Petrozza, A., Snaith, H. J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, (2013) ,341-344.
  • [14] Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Grätzel, M., Mhaisalkar, S., Sum, T. C.: Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, (2013), 344-347.
  • [15] Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals, Science, 347, (2015), 967-970.
  • [16] Bi, D., Tress, W., Dar, M. I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A., Giordano, F., Baena, J. C., Decoppet, J. D., Zakeeruddin, S. M., Nazeeruddin, M. K., Grätzel, M., Hagfeldt, A.: Efficient luminescent solar cells based on tailored mixed-cation perovskites, Science Adv., 2, (2016), e1501170.
  • [17] Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, (2015), 1234-1237.
  • [18] Li, X., Bi, D., Yi, C., Décoppet, J. D., Luo, J., Zakeeruddin, S. M., Hagfeldt, A., Grätzel, M.: A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells, Science, 353, (2016), 58-62.
  • [19] Min, H., Kim, M., Lee, S. U., Kim, H., Kim, G., Choi, K., Lee, J. H., Seok, S.: Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide, Science, 366, (2019), 749–753.
  • [20] Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z. G., Wu, J. L., Zhang, X. W., You, J.: Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells, Nature Energy, 2, (2016), 16177.
  • [21] Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Peng, W. Q., Han, L.: Retarding the crystallization of PbI2 for highly reproducible planarstructured perovskite solar cells via sequential deposition, Energy Environ. Sci., 7, (2014), 2934-2938.
  • [22] Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement, Adv. Mater., 26, (2014), 6503-6509.
  • [23] Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., Seok, S. I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater., 13, (2014), 97-903.
  • [24] Wu, Y., Yang, X., Chen, W., Yue, Y., Cai, M., Xie, F., Bi, E., Islam, A., Han, L.: Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering, Nature Energy,1, (2016), 16148.
  • [25] Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Weale, A. G., Bach, U., Cheng, Y. B., Spiccia, L.: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells, Angew. Chem. Int. Ed. Eng., 53, (2014), 9898-9903.
  • [26] Saliba, M., Matsui, T., Domanski, K., Seo, J. Y., Ummadisingu, A., Zakeeruddin, S. M., Correa-Baena, J. P., Tress, W. R., Abate, A., Hagfeldt, A., Grätzel, M.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, (2016), 206-209.
  • [27] Saliba, M., Matsui, T., Seo, J. Y., Domanski, K., Correa-Baena, J. P., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, (2016), 1989-1997.
  • [28] Bi, D., Yi, C., Luo, J., Décoppet, J. D., Zhang, F., Zakeeruddin, S. M., Li, X., Hagfeldt, A., Grätzel, M.: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nature Energy, 1, (2016), 16142.
  • [29] Ahn, N., Son, D. Y., Jang, I. H., Kang, S. M., Choi, M., Park, N. G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide, J. Am. Chem. Soc., 137, (2015), 8696-8699.
  • [30] Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., Snaith, H. J.: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells, Adv. Funct. Mater., 24 ,(2014), 151-157.
  • [31] Heo, J. H., Song, D. H., Han, H. J., Kim, S. Y., Kim, J. H., Kim, D., Shin, H. W., Ahn, T. K., Wolf, C., Lee, T. W., Im, S. H.: Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate, Adv. Mater., 27, (2015), 3424-3430.
  • [32] Jeon, Y. J., Lee, S., Kang, R., Kim, J. E., Yeo, J. S., Lee, S. H., Kim, S. S., Yun, J. M., Kim, D. Y.: Planar heterojunction perovskite solar cells with superior reproducibility, Sci. Rep., 4, (2014), 6953.
  • [33] Roldan-Carmona, C., Gratia, P., Zimmermann, I., Grancini, G., Gao, P., Graetzel, M., Nazeeruddin, M. K.: High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors, Energy & Environ. Sci., 8, (2015), 3550-3556.
  • [34] Yin, M., Xie, F., Chen, H., Yang, X., Ye, F., Bi, E., Wu, Y. Z., Cai, M. L., Han, L.: Annealing-free perovskite films by instant crystallization for efficient solar cells, J. Mater. Chem. A, 4, (2016), 8548-8553.
  • [35] Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Grätzel, M., Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science, 350, (2015), 944-948.
  • [36] Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I.: Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, (2015), 476-480.
  • [37] Liu, Y., Yang, Z., Cui, D., Ren, X., Sun, J., Liu, X., Zhang, J. R., Wei, Q. B., Fan, H. B., Yu, F.Y., Zhang, X.: Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization, Adv. Mater., 27, (2015), 5176-5183.
  • [38] Wang, Q., Shao, Y., Dong, Q., Xiao, Z., Yuan, Y., Huang, J.: Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci., 7, (2014), 2359-2365.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0bf7d98b-70f3-4656-a8c6-f8d67ce548ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.