Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 120, nr 2 | 49--58
Tytuł artykułu

Mechanical and tribological properties of epoxy composites reinforced with food-waste fillers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose One of the assumptions of the zero-waste economy is to reduce the amount of industrial waste produced, process it, and recover it without burning or burying it. Citrus peels are among the food wastes that are difficult to recycle. Due to the long time of decomposition and the waxes and fats in their structure, the shells rarely end up in composters and, consequently, are not included in natural fertilisers. The assumptions fit into the research described in the article. Design/methodology/approach The authors investigated the possibility of using ground peels of citrus fruits: grapefruit, key lime, lemon and orange as fillers in composite materials in which the role of the matrix was played by epoxy resin. Composite materials with 2.5, 5 and 10% filler content were prepared. The materials were tested using the tensile, hardness, and abrasive tests using the pin-on-disc method. Findings The research was to answer whether adding citrus waste can change the physicochemical properties of composite materials based on epoxy resin and native resin. Particular attention was paid to the properties that are important from the point of view of engineering applications: mechanical properties and tribological properties. Practical implications In the face of challenges related to the growing amount of waste from the food industry, joint materials engineering tries to answer whether this waste can be used in the production of composite materials. In several publications from recent years, it has been postulated that used food industry products can be used as fillers for composite materials, as they can, on the one hand, improve specific physicochemical properties of new materials and manage food waste. Originality/value The tests proved that composite materials with grapefruit and key lime as a filler were characterized by the best tribological properties, mechanical properties, and hardness, which were unchanged or better than the epoxy resin used as a matrix.
Wydawca

Rocznik
Strony
49--58
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland
  • Department of Biomaterials and Medical Device Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland
autor
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland
  • Department of English and American Studies, Faculty of Arts, Palacký University Olomouc, Křížkovského 10, Olomouc 779 00, Czech Republic
autor
  • Department of Theoretical and Applied Mechanics, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Material Technologies, Faculty of Materials Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, maciej.mrowka@polsl.pl
  • Material Innovations Laboratory, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] A. Krzyzak, E. Kosicka, R. Szczepaniak, Research into the Effect of Grain and the Content of Alundum on Tribological Properties and Selected Mechanical Properties of Polymer Composites, Materials 13/24 (2020) 5735. DOI: https://doi.org/10.3390/ma13245735
  • [2] K. Väer, J. Anton, A. Klauson, M. Eerme, E. Õunapuu, P. Tšukrejev, Material characterization for laminated glass composite panel, Journal of Achievements in Materials and Manufacturing Engineering 81/1 (2017) 11-17. DOI: https://doi.org/10.5604/01.3001.0010.2032
  • [3] M. Mrówka, J. Lenża-Czempik, A. Dawicka, M. Skonieczna, Polyurethane-Based Nanocomposites for Regenerative Therapies of Cancer Skin Surgery with Low Inflammatory Potential to Healthy Fibroblasts and Keratinocytes In Vitro, ACS Omega 8/41 (2023) 37769-37780. DOI: https://doi.org/10.1021/acsomega.3c01663
  • [4] J. Stabik, M. Chomiak, Influence of casting velocity on surface resistivity of epoxy-hard coal graded composites, Archives of Materials Science and Engineering 47/1 (2011) 48-56.
  • [5] E. Kosicka, M. Borowiec, M. Kowalczuk, A. Krzyżak, R. Szczepaniak, Influence of the Selected Physical Modifier on the Dynamical Behavior of the Polymer Composites Used in the Aviation Industry, Materials 13/23 (2020) 5479. DOI: https://doi.org/10.3390/ma13235479
  • [6] J. Lenża, M. Sozańska, H. Rydarowski, Methods for limiting the flammability of high-density polyethylene with magnesium hydroxide, in: A. Tiwari, B. Raj (eds), Reactions and Mechanisms in Thermal Analysis of Advanced Materials, First Edition, Scrivener Publishing LLC, Beverly, MA, USA, 2015, 85-101. DOI: https://doi.org/10.1002/9781119117711.ch4
  • [7] M. Jureczko, M. Mrówka, Multiobjective Optimization of Composite Wind Turbine Blade, Materials 15/13 (2022) 4649. DOI: https://doi.org/10.3390/ma15134649
  • [8] K. Drzewiecka, J. Kleczewska, M. Krasowski, J. Sokołowski, B. Łapińska, Mechanical properties of composite material modified with amorphous calcium phosphate, Journal of Achievements in Materials and Manufacturing Engineering 74/1 (2016) 22-28. DOI: https://doi.org/10.5604/17348412.1225754
  • [9] S. Sławski, A. Woźniak, P. Bazan, M. Mrówka, The Mechanical and Tribological Properties of Epoxy- Based Composites Filled with Manganese-Containing Waste, Materials 15/4 (2022) 1579. DOI: https://doi.org/10.3390/ma15041579
  • [10] K. Merkel, J. Lenża, H. Rydarowski, A. Pawlak, R. Wrzalik, Characterization of structure and properties of polymer films made from blends of polyethene with poly(4-methyl-1-pentene), Journal of Materials Research 32 (2017) 451-464. DOI: https://doi.org/10.1557/jmr.2016.471
  • [11] G. Belingardi, M.P. Cavatorta, D.S. Paolino, Composite material components damaged by impact loading: a methodology for assessing their residual elastic properties, Journal of Achievements in Materials and Manufacturing Engineering 87/1 (2018) 18-24. DOI: https://doi.org/10.5604/01.3001.0012.0735
  • [12] P. Bazan, M. Nykiel, S. Kuciel, Tribo-mechanical properties of composites based on polyoxymethylene reinforced with basalt fibre and silicon carbide whiskers, Polymer Engineering and Science 61/2 (2021) 600-611. DOI: https://doi.org/10.1002/pen.25605
  • [13] R. Szczepaniak, A. Komorek, P. Przybyłek, A. Krzyżak, M. Roskowicz, J. Godzimirski, E. Pinkiewicz, W. Jaszczak, E. Kosicka, Research into mechanical properties of an ablative composite on a polymer matrix base with aerogel particles, Composite Structures 280 (2022) 114855. DOI: https://doi.org/10.1016/j.compstruct.2021.114855
  • [14] M. Mrówka, K. Jaszcz, M. Skonieczna, Anticancer activity of functional polysuccinates with N-acetyl-cysteine in side-chains, European Journal of Pharmacology 885 (2020) 173501. DOI: https://doi.org/10.1016/j.ejphar.2020.173501
  • [15] A. Krzyżak, D. Racinowski, R. Szczepaniak, M. Mucha, E. Kosicka, The Impact of Selected Atmospheric Conditions on the Process of Abrasive Wear of CFRP, Materials 13/18 (2020) 3965. DOI: https://doi.org/10.3390/ma13183965
  • [16] K. Friedrich, Polymer composites for tribological applications, Advanced Industrial and Engineering Polymer Research 1/1 (2018) 3-39. DOI: https://doi.org/10.1016/j.aiepr.2018.05.001
  • [17] E. Kosicka, A. Krzyzak, M. Dorobek, M. Borowiec, Prediction of Selected Mechanical Properties of Polymer Composites with Alumina Modifiers, Materials 15/3 (2022) 882. DOI: https://doi.org/10.3390/ma15030882
  • [18] M. Eckrich, P.A. Arrabiyeh, A.M. Dlugaj, D. May, Placement defects in thermoset-impregnated rovings deposited along curved paths, Polmyer Composites 44/6 (2023) 3634-3645. DOI: https://doi.org/10.1002/pc.27350
  • [19] E. Kosicka, M. Borowiec, M. Kowalczuk, A. Krzyzak, Dynamic Behavior of Aviation Polymer Composites at Various Weight Fractions of Physical Modifier, Materials 14/22 (2021) 6897. DOI: https://doi.org/10.3390/ma14226897
  • [20] M. Chomiak, Reuse of polyester-glass laminate waste in polymer composites, Journal of Achievements in Materials and Manufacturing Engineering 107/2 (2021) 49-58. DOI: https://doi.org/10.5604/01.3001.0015.3583
  • [21] O. Olejnik, A. Masek, M.I. Szynkowska-Jóźwik, Self-Healable Biocomposites Crosslinked with a Combination of Silica and Quercetin, Materials 14/14 (2021) 4028. DOI: https://doi.org/10.3390/ma14144028
  • [22] A. Masek, O. Olejnik, Aging Resistance of Biocomposites Crosslinked with Silica and Quercetin, International Journal of Molecular Sciences 22/19 (2021) 10894. DOI: https://doi.org/10.3390/ijms221910894
  • [23] R.S. Kumar, P. Balasundar, N.A. Al-Dhabi, R. Prithivirajan, T. Ramakumar, K.S. Bhat, S. Senthil, P. Narayanasamy, A New Natural Cellulosic Pigeon Pea (Cajanus cajan) Pod Fiber Characterization for Bio-degradable Polymeric Composites, Journal of Natural Fibers 18/9 (2021) 1285-1295. DOI: https://doi.org/10.1080/15440478.2019.1689887
  • [24] Z. Sydow, M. Sydow, Ł. Wojciechowski, K. Bieńczak, Tribological Performance of Composites Reinforced with the Agricultural, Industrial and Post-Consumer Wastes: A Review, Materials 14/8 (2021) 1863. DOI: https://doi.org/10.3390/ma14081863
  • [25] H. Sharma, I. Singh, J.P. Misra, Mechanical and thermal behaviour of food waste (Citrus limetta peel) fillers–based novel epoxy composites, Polymers and Polymer Composites 27/9 (2019) 527-535. DOI: https://doi.org/10.1177/0967391119851012
  • [26] M. Vitale, M.d.M. Barbero-Barrera, S.M. Cascone, Thermal, Physical and Mechanical Performance of Orange Peel Boards: A New Recycled Material for Building Application, Sustainability 13/14 (2021) 7945. DOI: https://doi.org/10.3390/su13147945
  • [27] S. Tangjuank, Thermal insulation and physical properties of particleboards from pineapple leaves, International Journal of Physical Sciences 6/19 (2011) 4528-4532. DOI: https://doi.org/10.5897/IJPS11.1057
  • [28] M. Lamrani, N. Laaroussi, A. Khabbazi, M. Khalfaoui, M. Garoum, A. Feiz, Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster, Case Studies in Construction Materials 7 (2017) 294-304. DOI: https://doi.org/10.1016/j.cscm.2017.09.006
  • [29] H. Sharma, I. Singh, J.P. Misra, Evaluation of dynamic properties of citrus limetta peel-based epoxy composites, Materials Today: Proceedings 27/3 (2020) 2273-2276. DOI: https://doi.org/10.1016/j.matpr.2019.09.111
  • [30] H. Sharma, I. Singh, J.P. Misra, Effect of particle size on the physical, thermal and mechanical behaviour of epoxy composites reinforced with food waste fillers, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235/16 (2021) 3029-3035. DOI: https://doi.org/10.1177/0954406220958434
  • [31] H. Sharma, J.P. Misra, I. Singh, Friction and Wear behaviour of epoxy composites reinforced with food waste fillers, Composites Communications 22 (2020) 100436. DOI: https://doi.org/10.1016/j.coco.2020.100436
  • [32] H. Sharma, I. Singh, J.P. Misra, An initial investigation to explore the feasibility of fruit waste fillers for developing sustainable thermoplastic composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 237/9 (2023) 2009-2018. DOI: https://doi.org/10.1177/14644207231169121
  • [33] M. Poikelispää, A. Shakun, E. Sarlin, A. Das, J. Vuorinen, Vegetable fillers for electric stimuli responsive elastomers, Journal of Applied Polymer Science 134/28 (2017) 45081. DOI: https://doi.org/10.1002/app.45081
  • [34] M. Mrówka, D. Franke, M. Ošlejšek, M. Jureczko Influence of Citrus Fruit Waste Filler on the Physical Properties of Silicone-Based Composites, Materials 16/19 (2023) 6569. DOI: https://doi.org/10.3390/ma16196569
  • [35] M. Alsaadi, A. Erkliğ, K. Albu-khaleefah, Effect of Pistachio Shell Particle Content on the Mechanical Properties of Polymer Composite, Arabian Journal for Science and Engineering 43 (2018) 4689-4696. DOI: https://doi.org/10.1007/s13369-018-3073-x
  • [36] Y. Nayak, S. Kini, U. Heckadka, Pistachio shell flakes and flax fibers as reinforcement in polyester-based composite, Proceedings of the International Conference on Engineering and Information Technology, Kuala Lampur, Malaysia, 2017, 17-24.
  • [37] A.J. Al-Obaidi, S.J. Ahmed, A.T. Abbas, Investigation the mechanical properties of epoxy polymer by adding natural materials, Journal of Engineering Science and Technology 15/4 (2020) 2544-2558.
  • [38] N. Zarrinbakhsh, T. Want, A. Rodriguez-Uribe, M. Misra, A.K. Mohanty, Characterization of wastes and coproducts from the coffee industry for composite material production. BioResources 11 (2016) 7637-7653.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7985e5ad-c3c0-44e5-9cb0-4e62e66f6678
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.