Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 58, No. 1/2 | 1--9
Tytuł artykułu

Reconstruction of potential and boundary conditions for second order difference equations

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Assume the eigenvalues and the weights are given for a difference boundary value problem and that the form of the boundary conditions at the endpoints is known. In particular, it is known whether the endpoints are fixed (i.e. Dirichlet or non-Dirichlet boundary conditions) or whether the endpoints are free to move (i.e. boundary conditions with affine dependence on the eigenparameter). This work illustrates how the potential as well as the exact boundary conditions can be uniquely reconstructed. The procedure is inductive on the number of unit intervals. This paper follows along the lines of S. Currie and A. Love, Inverse problems for difference equations with quadratic eigenparameter dependent boundary conditions, Quaestiones Mathematicae, 40 (2017), no. 7, 861-877. Since the inverse problem considered in this paper contains more unknowns than the inverse problem considered in the above reference, an additional spectrum is required more often than was the case in the unique reconstruction of the potential alone.
Wydawca

Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 7 poz., tab.
Twórcy
autor
  • School of Mathematics, University of theWitwatersrand, Private Bag 3, PO WITS 2050, South Africa, Sonja.Currie@wits.ac.za
autor
  • School of Mathematics, University of theWitwatersrand, Private Bag 3, PO WITS 2050, South Africa, Anne.Love@wits.ac.za
Bibliografia
  • [1] M. Bohner and H. Koyunbakan, Inverse problems for Sturm-Liouville difference equations, Filomat 30 (2016), no. 5, 1297-1304, DOI 10.2298/FIL1605297B.
  • [2] S. Currie and A. Love, Inverse problems for difference equations with quadratic eigenparameter dependent boundary conditions, Quaest. Math. 40 (2017), no. 7, 861-877, DOI 10.2989/16073606.2017.1334156.
  • [3] S. Currie and A. Love, Hierarchies of difference boundary value problems continued, Adv. Differ. Equ. 19 (2013), no. 11, 1807-1827, DOI 10.1186/1687-1847-2013-311.
  • [4] S. Elaydi, An introduction to difference equations, Springer 2005.
  • [5] C. Gao and R. Ma, Eigenvalues of discrete Sturm-Liouville problems with eigenparameter dependent boundary conditions, Linear Algebra Appl. 503 (2016), 100-119, DOI 10.1016/j.laa.2016.03.043.
  • [6] O. H. Hald, Discrete inverse Sturm-Liouville problems. I. Uniqueness for symmetric potentials, Numer. Math. 27 (1976/77), no. 2, 249-256.
  • [7] W. G. Kelley and A. C. Peterson, Difference equations: an introduction with applications, Academic Press, New York 1991.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27c209a0-485f-4dcf-8953-cb2822166292
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.