Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | T. 14, nr 3 | 35--38
Tytuł artykułu

Neurobiological properties of the structure of the parallel-hierarchical network and its usage for pattern recognition

Treść / Zawartość
Warianty tytułu
PL
Neurobiologiczne właściwości struktury sieci równoległo-hierarchicznej i jej wykorzystanie do rozpoznawania wzorców
Języki publikacji
EN
Abstrakty
EN
The paper presents the analysis of neurobiological data on the existence of the structure of a parallel-hierarchical network. Discussed method of parallel-hierarchical transformation based on population coding and its application for the pattern recognition task. Based on the analysis, we can conclude that using the methods proposed, it is possible to measure the geometric parameters and properties of images, which can significantly increase the efficiency of processing, in particular estimating the center of mass based on moment characteristics. Experimental results demonstrate that due to various destabilizing factors, accurately measuring the energy center coordinates of laser beam spot images is challenging. However, training the PI network and classifying the fragments into "good" and "bad" can considerably enhance the accuracy of these measurements.
PL
W artykule przedstawiono analizę danych neurobiologicznych dotyczących istnienia struktury sieci równoległo-hierarchicznej. Omówiono metodę transformacji równoległo-hierarchicznej opartej na kodowaniu populacyjnym i jej zastosowanie do zadania rozpoznawania wzorców. Na podstawie przeprowadzonej analizy można stwierdzić, że za pomocą zaproponowanych metod można mierzyć parametry geometryczne i właściwości obrazów, co może znacznie zwiększyć wydajność przetwarzania, w szczególności szacowania środka masy na podstawie charakterystyki momentu. Wyniki eksperymentalne pokazują, że ze względu na różne czynniki destabilizujące, dokładny pomiar współrzędnych środka energii obrazów plamki wiązki laserowej jest trudny. Jednak szkolenie sieci PI i klasyfikowanie fragmentów na „dobre” i „złe” może znacznie zwiększyć dokładność tych pomiarów.
Wydawca

Rocznik
Strony
35--38
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
  • State University of Infrastructure and Technology, Kyiv, Ukraine, feklo15@gmail.com
  • Kruty Heroes Military Institute of Telecommunications and Information Technologies, Kyiv, Ukraine, pogrebniaklm@gmail.com
  • Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, Vinnytsia, Ukraine, burlaka10@i.ua
  • State University of Infrastructure and Technology, Kyiv, Ukraine, jettab3@gmail.com
  • Almaty Technological University; Institute of Information and Computational Technologies CS MHES, Almaty, Kazakhstan, ainur79@mail.ru
Bibliografia
  • [1] Avrunin O. G. et al.: Research Active Posterior Rhinomanometry Tomography Method for Nasal Breathing Determining Violations. Sensors 21, 2021, 8508 [https://doi.org/10.3390/s21248508].
  • [2] Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. IEEE 39th International Conference on Electronics and Nanotechnology – ELNANO 2019, 485–488.
  • [3] Chapelle O., Manavoglu E., Rosales R.: Simple and scalable response prediction for display advertising. Transactions on Intelligent Systems and Technology – TIST 5(4), 2015, 2015, 1–34.
  • [4] Comaniciu D., Ramesh V., Meer P.: Real-Time Tracking of Non-Rigid Objects Using Mean Shift. Conference on CVPR, 2, 2000, 1–8.
  • [5] Kukharchuk V. V. et al.: Features of the angular speed dynamic measurements with the use of an encoder. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska – IAPGOS 12(3), 2022, 20–26.
  • [6] Kuusilinna K. et al.: Configurable parallel memory architecture for multimedia computers. Journal of Systems Architecture 47(14–15), 2002, 1089–1115.
  • [7] Kvуetnyy R. et al.: Inverse correlation filters of objects features with optimized regularization for image processing. Proc. SPIE 12476, 2022, 124760Q.
  • [8] Lanitis A., Taylor C. J., Cootes T. F.: Automatic Face Identification System Using Flexible Appearance Models. Image and Vision Computing 13(5), 1995, 393–401.
  • [9] Orazayeva A. et al.: Biomedical image segmentation method based on contour preparation. Proc. SPIE 12476, 2022, 1247605.
  • [10] Rabinovich Z. L., Voronkov G. S.: Representation and processing of knowledge in the interaction of human sensory and linguistic neurosystems. Cybernetics and System Analysis 2, 1998, 3–11.
  • [11] Romanyuk O. et al.: A function-based approach to real-time visualization using graphics processing units. Proc. SPIE 11581, 2020, 115810E.
  • [12] Sree Vani M.: Prediction of Mobile Ad Click Using Supervised Classification Algorithms. International Journal of Computer Science and Information Technologies 7(2), 2016, 623–625.
  • [13] Timchenko L. I. et al.: Multi-stage parallel-hierarchical network as a model of a neural-like computing scheme. Cybernetics and system analysis 2, 2000, 114–134.
  • [14] Timchenko L. et al.: New methods of network modelling using parallel-hierarchical networks for processing data and reducing erroneous calculation risk. CEUR Workshop Proceedingsthis link is disabled 2805, 2020, 201–212.
  • [15] Tymchenko L. et al.: Development of a method of processing images of laser beam bands with the use of parallelhierarchic networks. Eastern-European Journal of Enterprise Technologiesthis link is disabled 6(9-102), 2019, 21–27.
  • [16] Vasilevskyi O. M.: Assessing the level of confidence for expressing extended uncertainty: a model based on control errors in the measurement of ion activity. Acta IMEKO 10(2), 2021, 199–203.
  • [17] Vasilevskyi O. et al.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. SPIE 2018, 10808, 108082E.
  • [18] Wójcik W. et al.: Information Technology in Medical Diagnostics II. Taylor & Francis Group.CRC Press, Balkema Book, London 2019.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d6bc6e6c-d1dd-44fa-90fb-1a08379d2246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.