Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 49, No. 4 | 323--353
Tytuł artykułu

Data Dissemination Techniques for Internet of Things Applications: Research Challenges and Opportunities

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The escalating prevalence of Internet of Things (IoT) devices has necessitated efficient data dissemination methods to optimize the unprecedented volume of generated data. The rapid expansion of IoT devices and the resulting surge in data creation underscore the necessity for advanced data dissemination methods. A noticeable gap in existing literature prompts a critical review, specifically addressing challenges and opportunities in IoT data dissemination techniques. This paper aims to categorize and analyze existing data dissemination techniques, highlighting their strengths and limitations. Additionally, it explores emerging opportunities and innovations that can shape the future of IoT applications. Furthermore, the discussion addresses challenges in data dissemination and explores innovative solutions, including machine learning, AI-based strategies, edge, and fog computing, blockchain integration, and advanced 5G/6G networks. The hope is that this study sets the stage for innovative ideas contributing to the efficiency and robustness of IoT applications, informing future endeavours in this dynamic and evolving landscape.
Wydawca

Rocznik
Strony
323--353
Opis fizyczny
Bibliogr. 92 poz., rys., tab.
Twórcy
  • Department of Computer Systems and Communication Technologies, Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS) Malaysia
  • Institute of Mustaqbal University, Buraidah Al Qassim, Saudi Arabia
Bibliografia
  • [1] Aboud A., Touati H., and Hnich, B. Efficient forwarding strategy in a NDN-based internet of things. Cluster Computing, 22(3), 805-818, 2019.
  • [2] Agbulu G. P., Kumar G. J. R., Juliet V. A., and Hassan S. A. PECDF-CMRP: A Power-Efficient Compressive Data Fusion and Cluster-Based Multi-hop Relay-Assisted Routing Protocol for IoT Sensor Networks. Wireless Personal Communications, 127(4), 2955-2977, 2022.
  • [3] Ahmad A., Din S., Paul A., Jeon G., Aloqaily M., and Ahmad M. Real-Time Route Planning and Data Dissemination for Urban Scenarios Using the Internet of Things. IEEE Wireless Communications, 26(December), 50-55, 2019.
  • [4] Al-Blihed N. S., Al-Mufadi N. F., Al-Harbi N. T., Al-Omari I. A., and Al-Hagery M. A. Blockchain and machine learning in the internet of things: a review of smart healthcare. IAES International Journal of Artificial Intelligence, 12(3), 995-1006, 2023.
  • [5] Al-Habob, A. A., Dobre, O. A., Muhaidat, S., and Vincent Poor, H. Energy-Efficient Data Dissemination Using a UAV: An Ant Colony Approach. IEEE Wireless Communications Letters, 10(1), 16-20, 2021.
  • [6] Alabadi M., Habbal A., and Wei X. Industrial Internet of Things: Requirements, Architecture, Challenges, and Future Research Directions. IEEE Access, 10(June), 66374-66400, 2022.
  • [7] Alablani I. A., and Arafah M. A. Enhancing 5G small cell selection: A neural network and iov-based approach. Sensors, 21(19), 1-22, 2021.
  • [8] Alfarraj, O. A machine learning-assisted data aggregation and offloading system for cloud–IoT communication. Peer-to-Peer Networking and Applications, 14(4), 2554-2564, 2021.
  • [9] Ali Z. H., Badawy M. M., and Ali, H. A. A novel geographically distributed architecture based on fog technology for improving Vehicular Ad hoc Network (VANET) performance. Peer-to-Peer Networking and Applications, 13(5), 1539-1566, 2020.
  • [10] Angelopoulos A., Michailidis E. T., Nomikos N., Trakadas P., Hatziefremidis A., Voliotis S., and Zahariadis, T. Tackling faults in the industry 4.0 era-a survey of machine-learning solutions and key aspects. Sensors (Switzerland), 20(1), 1-34, 2020.
  • [11] Anwar M., Masud F., Butt R. A., Idrus S. M., Ahmad M. N., and Bajuri, M. Y. Traffic Priority-Aware Medical Data Dissemination Scheme for IoT Based WBASN Healthcare Applications. Computers, Materials and Continua, 71(2), 4443-4456, 2022.
  • [12] Ayaz, M., Iqbal, J., Adnan, M., Hussain, S. S., Alabrah, A., Amin, N. U., Al-Hadhrami, S., & Mizanur Rahman, S. M. A Content Dissemination Technique Based on Priority to Improve Quality of Service of Vehicular Ad Hoc Networks. Journal of Advanced Transportation, 2022.
  • [13] Bello-Salau H., Onumanyi A. J., Abu-Mahfouz A. M., Adejo A. O., and Mu’azu M. B. New Discrete Cuckoo Search Optimization Algorithms for Effective Rute Discovery in IoT-Based Vehicular Ad-Hoc Networks. IEEE Access, 8, 145469-145488, 2020.
  • [14] Benalia E., and Mellouk A. Data dissemination for Internet of vehicle based on 5G communications : A survey. December 2019, 2020.
  • [15] Bodkhe U., and Tanwar S. Secure data dissemination techniques for IoT applications: Research challenges and opportunities. Software - Practice and Experience, 51(12), 2469-2491, 2021.
  • [16] Camarinha-Matos L. M., and Katkoori S. Challenges in IoT Applications and Research. IFIP Advances in Information and Communication Technology, 641 IFIP(February), 3-10, 2022.
  • [17] Changizi A., and Emadi M. J. Age-optimal path planning for finite-battery UAV-assisted data dissemination in IoT networks. IET Communications, 15(10), 1287-1296, 2021.
  • [18] Dammak M., Senouci S. M., Messous M. A., Elhdhili M. H., and Gransart, C. Decentralized Lightweight Group Key Management for Dynamic Access Control in IoT Environments. IEEE Transactions on Network and Service Management, 17(3), 1742-1757, 2020.
  • [19] Farhan L., Kharel R., Kaiwartya O., Quiroz-Castellanos M., Alissa A., and Abdulsalam M. A Concise Review on Internet of Things (IoT)-Problems, Challenges and Opportunities. 2018 11th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2018, July, 2018.
  • [20] Ghosh A., Khalid O., Rais R. N. B., Rehman A., Malik S. U. R., and Khan I. A. Data offloading in IoT environments: modeling, analysis, and verification. Eurasip Journal on Wireless Communications and Networking, 2019(1), 2019.
  • [21] Gu J., Wang H., Ding G., Xu Y., Xue Z., and Zhou H. Energy-constrained completion time minimization in UAV-enabled internet of things. IEEE Internet of Things Journal, 7(6), 5491-5503, 2020.
  • [22] Gupta A., and Singh A. Healthcare 4.0: recent advancements and futuristic research directions. Wireless Personal Communications, 129(2), 933-952, 2022.
  • [23] Gupta N., Manaswini R., Saikrishna B., Silva F., and Teles A. Authentication-based secure data dissemination protocol and framework for 5G-enabled VANET. Future Internet, 12(4), 1-18, 2020.
  • [24] Hameed S., Khan F. I., and Hameed B. Understanding Security Requirements and Challenges in Internet of Things (IoT): A Review. Journal of Computer Networks and Communications, 2019.
  • [25] Haseeb K., Ud Din I., Almogren A., Islam N., and Altameem A. RTS: A robust and trusted scheme for IoT-based mobile wireless mesh networks. IEEE Access, 8, 68379-68390, 2020.
  • [26] Hasenburg J., & Bermbach, D. GeoBroker: Leveraging geo-contexts for IoT data distribution. Computer Communications, 151(December 2019), 473-484, 2020.
  • [27] Huang C. M., Lin T. H., and Tseng, K. C. Data dissemination of application service by using member-centric routing protocol in a platoon of internet of vehicle (IoV). IEEE Access, 7, 127713-127727, 2019.
  • [28] Huang M., Liu W., Wang T., Song H., Li X., and Liu A. A queuing delay utilization scheme for on-path service aggregation in services-oriented computing networks. IEEE Access, 7, 23816-23833, 2019.
  • [29] Huda S. M. A., and Moh S. Survey on computation offloading in UAV-Enabled mobile edge computing. Journal of Network and Computer Applications, 201(February), 103341, 2022.
  • [30] Kabbaj S., Rahman A. U., Malik A. W., Baba A. I., and Ravana S. D. Time-bound single-path opportunistic forwarding in disconnected industrial environments. Vehicular Communications, 27, 100302, 2021.
  • [31] Kaur R., Raina B. L., and Sharma A. Internet of Things: Architecture, Applications, and Security Concerns. Journal of Computational and Theoretical Nanoscience, 17(6), 2468-2474. 2020.
  • [32] Khan M. Z., Rahim M., Javed M. A., Ghabban F., Ameerbakhsh O., and Alfadli I. A D2D assisted multi-hop data dissemination protocol for inter-UAV communication. International Journal of Communication Systems, 34(11), 1-11, 2021.
  • [33] Khan W. Z., Ahmed E., Hakak S., Yaqoob I., and Ahmed A. Edge computing: A survey. Future Generation Computer Systems, 97, 219-235, 2019.
  • [34] Kumar A., Shwe H. Y., Wong K. J., and Chong P. H. J. Location-Based Routing Protocols for Wireless Sensor Networks: A Survey. Scientific Research Publishing, 9, 25-72, 2017.
  • [35] Kumar S., and Tiwari R. Optimization of content-centric networking based IoT systems using partitioning-heuristics in-network cachingtechnique. Journal of Ambient Intelligence and Humanized Computing, 14(6), 6735-6749, 2023.
  • [36] Kumari A., Tanwar S., Tyagi S., and Kumar N. Blockchain-Based Massive Data Dissemination Handling in IIoT Environment. IEEE Network, 35(1), 318-325, 2021.
  • [37] Lenka R. K., Kolhar M., Mohapatra H., and Al-turjman F. Cluster-Based Routing Protocol with Static Hub (CRPSH) for WSN-Assisted IoT Networks. Sustainability (Switzerland), 14(12), 7304, 2022.
  • [38] Li G., Li X., Sun Q., Boukhatem L., and Wu, J. An Effective MEC Sustained Charging Data Transmission Algorithm in VANET-Based Smart Grids. IEEE Access, 8, 101946-101962, 2020.
  • [39] Liang J., Zhang J., Leung V. C. M., and Wu X. Distributed Information Exchange with Low Latency for Decision Making in Vehicular Fog Computing. IEEE Internet of Things Journal, XX(XX), 1-17, 2021.
  • [40] Limbasiya T., and Das D. IoVCom: Reliable Comprehensive Communication System for Internet of Vehicles. IEEE Transactions on Dependable and Secure Computing, 18(6), 2752-2766, 2021.
  • [41] Liu J., Yang J., Wu W., Huang X., and Xiang Y. Lightweight Authentication Scheme for Data Dissemination in Cloud-Assisted Healthcare IoT. IEEE Transactions on Computers, 01, 1-12, 2022.
  • [42] Liu L., Xi Z., and Wu J. Strengthening the Achilles’ Heel: An AUV-Aided Message Ferry Approach against Dissemination Vulnerability in UASNs. IEEE Internet of Things Journal, 8(19), 14948-14958, 2021.
  • [43] Liu X., Yu J., Feng Z., Wang H., and Tian H. Adaptive multi-layer clustering strategies based on capacity weight for Internet of Things. Concurrency and Computation: Practice and Experience, July, 1-16, 2022.
  • [44] Liu Z., Huang F., Weng J., Cao K., Miao Y., Guo J., and Wu Y. Btmpp: Balancing trust management and privacy preservation for emergency message dissemination in vehicular networks. IEEE Internet of Things Journal, 8(7), 5386-5407, 2021.
  • [45] Liu Z., Weng J., Guo J., Ma J., Huang F., Sun H., and Cheng, Y. PPTM: A Privacy-Preserving Trust Management Scheme for Emergency Message Dissemination in Space-Air-Ground-Integrated Vehicular Networks. IEEE Internet of Things Journal, 9(8), 5943-5956, 2022.
  • [46] Liu Z., Weng J., Ma J., Guo J., Feng B., Jiang Z., and Wei K. TCEMD: A Trust Cascading-Based Emergency Message Dissemination Model in VANETs. IEEE Internet of Things Journal, 7(5), 4028-4048, 2020.
  • [47] Lohstroh M., Kim H., Eidson J. C., Jerad C., Osyk B., and Lee E. A. On Enabling Technologies for the Internet of Important Things. IEEE Access, 7, 27244-27256, 2019.
  • [48] Luo Y., Zhu X., and Long J. Data Collection through Mobile Vehicles in Edge Network of Smart City. IEEE Access, 7, 168467-168483, 2019.
  • [49] Mahdavinejad M. S., Rezvan M., Barekatain M., Adibi P., Barnaghi P., and Sheth A. P. Machine learning for internet of things data analysis: a survey. Digital Communications and Networks, 4(3), 161-175, 2018.
  • [50] Meddeb M., Dhraief A., Belghith A., Monteil T., Drira, K., and Mathkour, H. Least fresh first cache replacement policy for NDN-based IoT networks. Pervasive and Mobile Computing, 52, 60-70, 2019.
  • [51] Mujica G., and Portilla J. Distributed reprogramming on the edge: A new collaborative code dissemination strategy for IoT. Electronics (Switzerland), 8(3), 2019.
  • [52] Munjal R., Liu W., Li X. J., and Gutierrez J. A neural network-based sustainable data dissemination through public transportation for smart cities. Sustainability (Switzerland), 12(24), 1-26, 2020.
  • [53] Naeem M. A., Rehman M. A. U., Ullah R., and Kim B. S. A Comparative Performance Analysis of Popularity-Based Caching Strategies in Named Data Networking. IEEE Access, 8, 50057-50077, 2020.
  • [54] Naseer S., Liu W., Sarkar N. I., Shafiq M., and Choi J. G. Smart city taxi trajectory coverage and capacity evaluation model for vehicular sensor networks. Sustainability (Switzerland), 13(19), 1-24, 2021.
  • [55] Ometov A., Molua O. L., Komarov M., and Nurmi J. A Survey of Security in Cloud, Edge, and Fog Computing. Sensors, 22(3), 1-27, 2022.
  • [56] Osamy W., M. Khedr A., Salim A., Al Ali A. I., and El-Sawy A. A. A review on recent studies utilizing artificial intelligence methods for solving routing challenges in wireless sensor networks. PeerJ Computer Science, 8, e1089, 2022.
  • [57] Peng P., and Soljanin E. Covert, Low-Delay, Coded Message Passing in Mobile (IoT) Networks. IEEE Transactions on Information Forensics and Security, 17, 599-611, 2022.
  • [58] Pham V. N., Nguyen V. D., Nguyen T. D. T., and Huh E. N. Efficient edge-cloud publish/subscribe broker overlay networks to support latency-sensitive wide-scale iot applications. Symmetry, 12(1), 2020.
  • [59] Qureshi K. N., Idrees M. M., Lloret J., and Bosch I. Self-Assessment Based Clustering Data Dissemination for Sparse and Dense Traffic Conditions for Internet of Vehicles. IEEE Access, 8, 10363-10372, 2020.
  • [60] Rahaman M. M. A Review on Internet of Things-IoT- Architecture, Technologies, Future Applications & Challenges. International Journal of Science and Business, 14(1), 80-92, 2022.
  • [61] Rajasekar V., Jayapaul P., Krishnamoorthi S., Saracevic M., Elhoseny M., and Al-Akaidi M. Enhanced WSN Routing Protocol for Internet of Things to Process Multimedia Big Data. Wireless Personal Communications, 126(3), 2081-2100, 2022.
  • [62] Safavat S., and Rawat D. B. On the Elliptic Curve Cryptography for Privacy-Aware Secure ACO-AODV Routing in Intent-Based Internet of Vehicles for Smart Cities. IEEE Transactions on Intelligent Transportation Systems, 22(8), 5050-5059, 2021.
  • [63] Sakthidasan Sankaran K., Vasudevan N., and Verghese A. ACIAR: application-centric information-aware routing technique for IOT platform assisted by wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(11), 4815-4825, 2020.
  • [64] Seong H., Kim J., and Shin W.-Y. FiFo: Fishbone Forwarding in Massive IoT Networks. IEEE Internet of Things Journal, 1-1, 2022.
  • [65] Shafique K., Khawaja B. A., Sabir F., Qazi S., and Mustaqim M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios. IEEE Access, 8, 23022-23040, 2020.
  • [66] Shahab S., Agarwal P., Mufti T., and Obaid A. J. SIoT (Social Internet of Things): A Review. Lecture Notes in Networks and Systems, 314(11), 289-297, 2022.
  • [67] Shanmugapriya R., and Santhosh Kumar S. V. N. Comprehensive survey on data dissemination protocols for efficient reprogramming in Internet of Things. Concurrency and Computation: Practice and Experience, 34(26), e7280, 2022.
  • [68] Shu C., Zhao Z., Min G., and Chen S. Mobile Edge Aided Data Dissemination for Wireless Healthcare Systems. IEEE Transactions on Computational Social Systems, 6(5), 898-906, 2019.
  • [69] Shukla S., Hassan M. F., Tran D. C., Akbar R., Paputungan I. V., and Khan M. K. (2021). Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR). Cluster Computing, 3, 2021.
  • [70] Singh P., Kaur A., and Kumar N. A reliable and cost-efficient code dissemination scheme for smart sensing devices with mobile vehicles in smart cities. Sustainable Cities and Society, 62(March), 102374, 2020.
  • [71] Srinidhi N. N., Dilip Kumar S. M., and Venugopal K. R. Network optimizations in the Internet of Things: A review. Engineering Science and Technology, an International Journal, 22(1), 1-21, 2019.
  • [72] Sutikno T., and Thalmann D. Insights on the internet of things: past, present, and future directions. Telkomnika (Telecommunication Computing Electronics and Control), 20(6), 1399-1420, 2022.
  • [73] Tan H., and Chung I. Rsu-aided remote v2v message dissemination employing secure group association for uav-assisted vanets. Electronics (Switzerland), 10(5), 1-22, 2021.
  • [74] Tekouabou S. C. K., Alaoui E. A. A., and Gallais A. Efficient forwarding strategy in HDRP protocol based Internet of Things. Computer Communications, 170(December 2020), 164-176, 2021.
  • [75] Ullah S. S., Ullah I., Khattak H., Khan M. A., Adnan M., Hussain S., Amin N. U., and Khattak M. A. K. A Lightweight Identity-Based Signature Scheme for Mitigation of Content Poisoning Attack in Named Data Networking with Internet of Things. In IEEE Access (Vol. 8, pp. 98910-98928), 2020.
  • [76] Verma S., Kaur S., Khan M. A., and Sehdev P. S. Toward green communication in 6g-enabled massive internet of things. IEEE Internet of Things Journal, 8(7), 5408-5415, 2021.
  • [77] Wang P., Lin C., Obaidat M. S., Yu Z., Wei Z., and Zhang Q. Contact Tracing Incentive for COVID-19 and Other Pandemic Diseases from a Crowdsourcing Perspective. IEEE Internet of Things Journal, 8(21), 15863-15874, 2021.
  • [78] Wang Y., Zhu H., Hei X., Kong Y., Ji W., and Zhu, L. An energy saving based on task migration for mobile edge computing. Eurasip Journal on Wireless Communications and Networking, 2019(1), 2019.
  • [79] Wu J., Yin S., and Yu G. Effective Data Selection and Management Method Based on Dynamic Regulation in Opportunistic Social Networks. Electronics (Switzerland), 9(8), 1-18, 2020.
  • [80] Wu Y., Fang X., Luo C., and Min G. Intelligent Content Precaching Scheme for Platoon-Based Edge Vehicular Networks. IEEE Internet of Things Journal, 9(20), 20503-20518, 2022.
  • [81] Xia Y., Wu L., and Zheng X. Data Dissemination With Trajectory Privacy Protection for 6G-Oriented Vehicular Networks. IEEE Internet of Things Journal, 9(21), 21469-21480, 2022.
  • [82] Xiao K., Feng K., Dong A., and Mei Z. Efficient Data Dissemination Strategy for UAV in UAV-Assisted VANETs. IEEE Access, 11(April), 40809-40819, 2023.
  • [83] Xu Z., Cai M., Li X., Hu T., and Song Q. Edge-aided reliable data transmission for heterogeneous edge-IoT sensor networks. Sensors (Switzerland), 19(9), 1-14, 2019.
  • [84] Yang H., Ruby R., Pham Q. V., and Wu K. Aiding a Disaster Spot via Multi-UAV-Based IoT Networks: Energy and Mission Completion Time-Aware Trajectory Optimization. IEEE Internet of Things Journal, 9(8), 5853-5867, 2022.
  • [85] Yang L., Zhang L., He Z., Cao J., and Wu W. Efficient Hybrid Data Dissemination for Edge-Assisted Automated Driving. IEEE Internet of Things Journal, 7(1), 148-159, 2020.
  • [86] Yarinezhad R., and Azizi S. An energy-efficient routing protocol for the Internet of Things networks based on geographical location and link quality. Computer Networks, 193(July 2020), 108116, 2021.
  • [87] Yarinezhad R., and Sabaei M. An optimal cluster-based routing algorithm for lifetime maximization of Internet of Things. Journal of Parallel and Distributed Computing, 156, 7-24, 2021.
  • [88] Yu G., Chen Z., and Wu J. Content-Aware Personalized Sharing Based on Cooperative User Selection and Attention in Mobile Internet of Things. IEEE Transactions on Network and Service Management, 20(1), 521-532, 2023.
  • [89] Zhang D., Zheng L., Chen Q., Wei B., and Ma, X. A Power Allocation-Based Overlapping Transmission Scheme in Internet of Vehicles. IEEE Internet of Things Journal, 6(1), 50-59, 2019.
  • [90] Zhang J., Hu P., and Long J. A hybrid transmission based data collection scheme with delay and reliability guaranteed for lossy WSNs. IEEE Access, 7, 70474-70485, 2019.
  • [91] Zhao Y., Wang T., Zhang S., and Wang Y. Towards minimum code dissemination delay through UAV joint vehicles for smart city. IET Communications, 14(15), 2442-2452, 2020.
  • [92] Zhong X., and Liang Y. Scalable Downward Routing for Wireless Sensor Networks Actuation. IEEE Sensors Journal, 19(20), 9552-9560, 2019.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2857d148-c819-41a8-9e2c-210103e56bda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.