Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 20, no. 1 | 3--13
Tytuł artykułu

Application of grammatical evolution to coefficient identification problem in two-dimensional elastic problem

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grammatical evolution (GE), which is a kind of evolutionary algorithms, is designed to find a function, an executable program or program fragment that will achieve a good fitness value for the given objective function to be minimized. In this study, GE is applied for the coefficient identification problem of the stiffness matrix in the two-dimensional elastic problem. Finite element analysis of the plate with a circular hole is performed for determining the set of the stress and the strain components. Grammatical evolution determines the coefficient matrix of the relationship between the stress and strain components. The coefficient matrix is compared with Hooke's law in order to confirm the validity of the algorithm. After that, three algorithms are shown for improving the convergence speed of the original GE algorithm.
Wydawca

Rocznik
Strony
3--13
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan
autor
  • Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan
autor
Bibliografia
  • [1] D.E. Goldberg.Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, 1st Edition,1989.
  • [2] J.R. Koza, editor. Genetic Programming II. The MIT Press, 1994.
  • [3] C. Ryan, J.J. Collins, M. O’Neill. Grammatical evolution: Evolving programs for an arbitrary language. In Proceedings of 1st European Workshop on Genetic Programming, pp. 83–95, Springer-Verlag, 1998.
  • [4] C.Ryan, M. O’Neill. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Springer-Verlag, 2003.
  • [5] A. Brabazon, M. O’Neill. Biologically Inspired Algorithms for Financial Modelling. Springer Verlag, 2006.
  • [6] K.-J. Bathe, E.D. Wilson. Numerical Methods in Finite Element Analysis. Prentice-Hall, 1976.
  • [7] K.-J. Bathe . Finite Element Procedures in Engineering Analysis. Prentice-Hall, 1982.
  • [8] D.S. Burnett. Finite Element Analysis. AT&T Bell Lab., 1987.
  • [9] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method. McGraw-Hill Ltd., 4th Edition, 1991.
  • [10] W. Grela, T. Burczynski. Evolutionary stress minimisation on a turbine blade shank. Computer Assisted Methodsin Engineering and Science,12(2/3): 147–161, 2005.
  • [11] T. Burczynski, W. Beluch, A. Długosz, P. Orantek, A. Skrobol. Intelligent computing in inverse problems. Computer Assisted Methods in Engineering and Science,13(1): 161–206, 2006.
  • [12] A. Maniatty, N. Zabaras, K. Stelson. Finite element analysis of some inverse elasticity problems. Journal ofEngineering Mechanics,115(6): 1303–1317, 1989.
  • [13] L. Houfek, P. Krejci, Z. Kolarova. Parameter identification of civil structure by genetic algorithm. In Ryszard Jablonski and Tomas Brezina [Eds.], Mechatronics, pp. 515–521, Springer Berlin Heidelberg, 2012.
  • [14] S. Dhandole, S.V. Modak. A constrained optimization based method for acoustic finite element model updatingof cavities using pressure response. Applied Mathematical Modelling, 36(1): 399–413, 2012.
  • [15] D. Moens, M. Hanss. Non-probabilistic finite element analysis for parametric uncertainty treatment in ap-plied mechanics: Recent advances.Finite Elements in Analysis and Design – Special Issue on Uncertainty and Structural Dynamics, 47(1): 4–16, 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e7d45550-e44e-4056-8df0-e75188e2ba44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.