Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 97, nr 4 | 265--271
Tytuł artykułu

An evaluation of renewable fuels microstructure after the combustion process

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the presented study is to investigate the morphological characteristics of biomass and sewage sludge ash and raw samples by FTIR and SEM methods. Biomass and sewage sludge are adequate renewable fuels, but require further investigation focusing on the evaluation and degradation of organic and inorganic compounds in renewable fuels. In this study, biomass and sewage sludge and its ash were examined in terms of physical and chemical properties to gain an understanding of their compositional and structural characteristics through analytical approaches such as CHNS, ash composition, HHV, FTIR and SEM. The FTIR was recorded using the Bruker Alpha FTIR Spectrometer. FTIR spectra reflects the complex and different compositions of studied fuels and the influence of the combustion process. The presented spectra evidently depict changes in the bond structure of the studied materials under the combustion process. Degradation of the morphology structure is also confirmed by SEM.
Słowa kluczowe
Wydawca

Rocznik
Strony
265--271
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Mickiewicza 30 Av., 30-056 Krakow, Poland , mwilk@agh.edu.pl
  • AGH University of Science and Technology, Mickiewicza 30 Av., 30-056 Krakow, Poland , amagdzia@agh.edu.pl
Bibliografia
  • [1] Central Statistical Office of Poland, 2015.
  • [2] R. Fernandez, C. Garcia, A. G. Lavin, J. de las Heras, Study of main combustion characteristics for biomass fuels used in boilers, Fuel Processing Technology 103 (2012) 16–26.
  • [3] S. Nanda, P. Mohanty, K. Pant, S. Naik, J. Kozinski, A. Dalai, Characterization of north american lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels, Bioenergy Research 6 (2) (2013) 663–677.
  • [4] M. Diaz-Ramirez, F. Sebastian, J. Royo, A. Rezeau, Combustion requirements for conversion of ashrich novel energy crops in a 250 kw th multifuel grate fired system, Energy 46 (1) (2012) 636–643.
  • [5] M. Wilk, A. Magdziarz, I. Kalemba, P. Gara, Carbonisation of wood residue into charcoal during low temperature process, Renewable Energy 85 (2016) 507–513.
  • [6] M. Wilk, A. Magdziarz, M. Gajek, M. Zajemska, K. Jayaraman, I. Gokalp, Combustion and kinetic parameters estimation of torrefied pine, acacia and miscanthus giganteus using experimental and modelling techniques, Bioresource Technology 243 (2017) 304–314.
  • [7] E. Union, Directive 2009/28/ec of the european parliament and of the council of 23 april 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ec and 2003/30/ec, Official Journal of the European Union 5 (2009) 2009.
  • [8] A. Magdziarz, S. Werle, Analysis of the combustion and pyrolysis of dried sewage sludge by tga and ms, Waste management 34 (1) (2014) 174–179.
  • [9] G. Garcia, J. Arauzo, A. Gonzalo, J. Sanchez, J. Abrego, Influence of feedstock composition in fluidised bed co-gasification of mixtures of lignite, bituminous coal and sewage sludge, Chemical Engineering Journal 222 (2013) 345–352.
  • [10] A. Magdziarz, M. Wilk, B. Kosturkiewicz, Investigation of sewage sludge preparation for combustion process, Chemical and Process Engineering 32 (4) (2011) 299–309.
  • [11] M. Wilk, A novel method of sewage sludge pre-treatment-htc, Vol. 10, 2016, p. 00103.
  • [12] D. Komilis, K. Kissas, A. Symeonidis, Effect of organic matter and moisture on the calorific value of solid wastes: An update of the tanner diagram, Waste Management 34 (2) (2014) 249–255.
  • [13] O. Senneca, Kinetics of pyrolysis, combustion and gasification of three biomass fuels, Fuel Processing Technology 88 (1) (2007) 87–97.
  • [14] L. Darvell, J. Jones, B. Gudka, X. Baxter, A. Saddawi, A. Williams, A. Malmgren, Combustion properties of some power station biomass fuels, Fuel 89 (10) (2010) 2881–2890.
  • [15] E. Kastanaki, D. Vamvuka, A comparative reactivity and kinetic study on the combustion of coal–biomass char blends, Fuel 85 (9) (2006) 1186–1193.
  • [16] A. Williams, M. Pourkashanian, J. Jones, Combustion of pulverised coal and biomass, Progress in Energy and Combustion Science 27 (6) (2001) 587–610.
  • [17] A. Magdziarz, M. Wilk, M. Zajemska, Modelling of pollutants concentrations from the biomass combustion process, Chemical and Process Engineering 32 (4) (2011) 423–433.
  • [18] M. Varol, A. Atimtay, B. Bay, H. Olgun, Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis, Thermochimica Acta 510 (1) (2010) 195–201.
  • [19] M. Van der Stelt, H. Gerhauser, J. Kiel, K. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass and Bioenergy 35 (9) (2011) 3748–3762.
  • [20] A. Magdziarz, M. Wilk, M. Gajek, D. Nowak-Wozny, A. Kopia, I. Kalemba-Rec, J. Kozinski, Properties of ash generated during sewage sludge combustion: A multifaceted analysis, Energy 113 (2016) 85–94.
  • [21] A. Magdziarz, A. Dalai, J. Kozinski, Chemical composition, character and reactivity of renewable fuel ashes, Fuel 176 (2016) 135–145.
  • [22] A. Demirbas, D. Gullu, A. Caglar, F. Akdeniz, Estimation of calorific values of fuels from lignocellulosics, Energy Sources 19 (8) (1997) 765–770.
  • [23] F. Xu, J. Yu, T. Tesso, F. Dowell, D. Wang, Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a minireview, Applied Energy 104 (2013) 801–809.
  • [24] P. Thipkhunthod, V. Meeyoo, P. Rangsunvigit, T. Rirksomboon, Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition, Journal of Analytical and Applied Pyrolysis 79 (1) (2007) 78–85.
  • [25] M. Grube, J. Lin, P. Lee, S. Kokorevicha, Evaluation of sewage sludgebased compost by ftir spectroscopy, Geoderma 130 (3) (2006) 324–333.
  • [26] M. Tantawy, A. El-Roudi, E. Abdalla, M. Abdelzaher, Evaluation of the pozzolanic activity of sewage sludge ash, ISRN Chemical Engineering 2012.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1777d262-1c00-4876-9fae-2eb2605f1bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.