Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 14, no. 1 | art. no. 20170026
Tytuł artykułu

Missing data in open-data era - a barrier to multiomics integration

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exploration of complex interactions in biological systems is one of the main aims in nature science nowadays. Progress in this area is possible because of high-throughput omics technologies and the computational surge. The development of analytical methods “is trying to keep pace” with the development of molecular biology methods that provide increasingly large amounts of data - omics data. Specialized databases consist of ever-larger collections of experiments that are usually conducted by one next-generation sequencing technique (e.g. RNA-seq). Other databases integrate data by defining qualitative relationships between individual objects in the form of ontologies, interactions, and pathways (e.g. GO, KEGG, and String). However, there are no open-source complementary quantitative data sets for the biological processes studied, including information from many levels of the organism organization, which would allow the development of multidimensional data analysis methods (multiscale and insightful overviews of biological processes). In the paper, the lack of omics complementary quantitative data set, which would help integrate the defined qualitative biological relationships of individual biomolecules with statistical, computational methods, is discussed.
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. 20170026
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland, mpiwowar@cm-uj.krakow.pl
  • Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom
Bibliografia
  • [1] Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016 September 14;17(9): E1555.
  • [2] Trivedi DK, Hollywood KA, Goodacre R. Metabolomics for the masses: the future of metabolomics in a personalized world. New Horizons Transl Med [Internet] 2017; 3:294-305.
  • [3] Chen HH, Kuo MT. Improving radiotherapy in cancer treatment: promises and challenges [Internet]. Oncotarget 2017; 8:62742-58.
  • [4] Weinshilboum RM, Wang L. Pharmacogenomics: precision medicine and drug response [Internet]. Mayo Clin Proc 2017; 92:1711-22.
  • [5] Neavin D, Kaddurah-Daouk R, Weinshilboum R. Pharmacometabolomics informs pharmacogenomics [Internet]. Metabolomics 2016; 12:121.
  • [6] Senft D, Leiserson MD, Ruppin E, Ronai ZA. Precision oncology: the road ahead [Internet]. Trends Mol Med 2017; 23:874-98.
  • [7] Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases [Internet]. Respir Res 2017; 18:149.
  • [8] Moran S, Martinez-Cardús A, Boussios S, Esteller M. Precision medicine based on epigenomics: the paradigm of carcinoma of unknown primary [Internet]. Nat Rev Clin Oncol 2017; 14:682-94.
  • [9] Dunkler D, Sánchez-Cabo F, Heinze G. Statistical analysis principles for omics data. Methods Mol Biol 2011; 719:113-31.
  • [10] Gottardo R, Pannucci JA, Kuske CR, Brettin T. Statistical analysis of microarray data: a Bayesian approach. Biostatistics 2003; 4:597-620.
  • [11] Chadeau-Hyam M, Campanella G, Jombart T, Bottolo L, Portengen L, Vineis P, et al. Deciphering the complex: methodological overview of statistical models to derive OMICS-based biomarkers [Internet]. Environ Mol Mutagen 2013; 54:542-57.
  • [12] Leipzig J. A review of bioinformatic pipeline frameworks [Internet]. Brief Bioinform 2016; 18:bbw020.
  • [13] Merrick BA, London RE, Bushel PR, Grissom SF, Paules RS. Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics. IARC Sci Publ. 2011; 163:121-42.
  • [14] Waller T, Gubała T, Sarapata K, Piwowar M, Jurkowski W. DNA microarray integromics analysis platform [Internet]. BioData Min 2015; 8:18.
  • [15] Grene R, Klumas C, Suren H, Yang K, Collakova E, Myers E, et al. Mining and visualization of microarray and metabolomic data reveal extensive cell wall remodeling during winter hardening in Sitka spruce (Picea sitchensis). Front Plant Sci 2012; 3:241.
  • [16] Li S, Todor A, Luo R. Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J 2016; 14:1-7.
  • [17] Su G, Burant CF, Beecher CW, Athey BD, Meng F, Ferrara C, et al. Integrated metabolome and transcriptome analysis of the NCI60 dataset. BMC Bioinform 2011; 12:S36.
  • [18] Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA [Internet]. Bioinformatics 2011; 27:2917-8.
  • [19] Kuo T-C, Tian T-F, Tseng Y, Kolbe A, Oliver S, Fernie A, et al. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst Biol 2013; 7:64.
  • [20] Lin D, Zhang J, Li J, Xu C, Deng H-W, Wang Y-P. An integrative imputation method based on multi-omics datasets. BMC Bioinform 2016; 17:247.
  • [21] Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-omics factor analysis disentangles heterogeneity in blood cancer [Internet]. bioRxiv 2017. Article no: 217554.
  • [22] Acharjee A, Ament Z, West JA, Stanley E, Griffin JL. Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinform 2016; 17:440.
  • [23] Acharjee A, Kloosterman B, de Vos RC, Werij JS, Bachem CW, Visser RG, et al. Data integration and network reconstruction with omics data using random forest regression in potato. Anal Chim Acta 2011; 705:56-63.
  • [24] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship [Internet]. Sci Data 2016;3. Article no: 160018.
  • [25] Schneider MV, Orchard S. Omics technologies, data and bioinformatics principles. Methods Mol Biol 2011; 719:3-30.
  • [26] Fletcher B. First paper with “living figure” published. Available at: https://www.biosciencetechnology.com/article/2015/04/first-paperliving-figure-published. Accessed: 24 Jan 2018.
  • [27] Colomb J, Brembs B. Sub-strains of Drosophila Canton-S differ markedly in their locomotor behavior [Internet]. F1000Research. 2015 January 1;3(Version 2):176.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-37d9125e-2f4b-474c-b8f7-4a847a7d1de3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.