Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 95, nr 3 | 167--174
Tytuł artykułu

Comprehensive study on bituminous coal oxidation by TGA–DTA–FTIR experiment

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spontaneous combustion of coal can have serious consequences. Bituminous coal is especially problematic as it produces a large amount of smoke comparative to other coals. Variable heating rate thermogravimetry analysis–differential thermal analysis–Fourier transform infrared spectroscopy experiments (TGA–DTA–FTIR) were conducted on three kinds of bituminous coals to study the change rule of weight, heat, and generated gas during the entire oxidation process from slow self-heating to burn out. Experimental results indicate that weight, heat, and gas release are in mutual correspondence at stages 1-4 in the oxidation process. However, change in generated gas lags behind weight and heat changes in the last stage. The main gas products of the oxidation process are CO, CO2, H2O, and CH4.The process of gas release depends on the reaction characteristics of related active structures. The concentration of generated gas from the same coal is CO2>H2O>CO>CH4. CO2 accounts for about 90% of the total amount of gas. The relationships between absorbance and temperature of generated gases in the rapid generation stage are linear or binomial, R2 are higher than 0.95. A comparison of the experimental results on different bituminous coals shows that when volatile matter is high, the characteristic temperatures are low and the concentration of generated gas and rate of heat release are high.
Wydawca

Rocznik
Strony
167--174
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China, zhfkd@sina.com
  • College of Resource, Hebei University of Engineering, Handan 056038, China
autor
  • School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China
autor
  • University of Bath, Bath, BA2 7AY, United Kingdom
Bibliografia
  • [1] A. Sánchez, E. Eddings, F. Mondragón, Fourier transform infrared (ftir) online monitoring of no, n2o, and co2 during oxygen-enriched combustion of carbonaceous materials, Energy & Fuels 24 (9) (2010) 4849–4853.
  • [2] X. Tang, Y. Liang, H. Dong, Y. Sun, H. Luo, Analysis of index gases of coal spontaneous combustion using fourier transform infrared spectrometer, Journal of Spectroscopy 2014.
  • [3] K. Yip, E. Ng, C.-Z. Li, J.-I. Hayashi, H. Wu, A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars, Proceedings of the Combustion Institute 33 (2) (2011) 1755–1762.
  • [4] X. Qi, D. Wang, H. Xue, L. Jin, B. Su, H. Xin, Oxidation and self-reaction of carboxyl groups during coal spontaneous combustion, Spectroscopy Letters 48 (3) (2015) 173–178.
  • [5] W. Zhang, S. Jiang, K. Wang, L. Wang, Y. Xu, Z. Wu, H. Shao, Y. Wang, M. Miao, Thermogravimetric dynamics and ftir analysis on oxidation properties of low-rank coal at low and moderate temperatures, International Journal of Coal Preparation and Utilization 35 (1) (2015) 39–50.
  • [6] W. Deming, X. ZHONG, G. Junjie, Q. Xuyao, Changes in active functional groups during low-temperature oxidation of coal, Mining Science and Technology (China) 20 (1) (2010) 35- 40.
  • [7] Y. Zhang, J. Wu, L. Chang, J. Wang, Z. Li, Changes in the reaction regime during low-temperature oxidation of coal in confined spaces, Journal of Loss Prevention in the Process Industries 26 (6) (2013) 1221–1229.
  • [8] J. N. Carras, S. J. Day, A. Saghafi, D. J. Williams, Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia, International Journal of Coal Geology 78 (2) (2009) 161–168.
  • [9] L. Yuan, A. C. Smith, Co and co 2 emissions from spontaneous heating of coal under different ventilation rates, International Journal of Coal Geology 88 (1) (2011) 24–30.
  • [10] J. Deng, Y. Xiao, Q. Li, J. Lu, H. Wen, Experimental studies of spontaneous combustion and anaerobic cooling of coal, Fuel 157 (2015) 261–269.
  • [11] A. Adamus, J. Šancer, P. Gufranová, V. Zubícek, An investigation of the factors associated with interpretation of mine atmosphere for spontaneous combustion in coal mines, Fuel Processing Technology 92 (3) (2011) 663–670.
  • [12] V. Slovák, B. Taraba, Effect of experimental conditions on parameters derived from tg-dsc measurements of low-temperature oxidation of coal, Journal of Thermal Analysis and Calorimetry 101 (2) (2010) 641–646.
  • [13] K. E. Benfell, B. B. Beamish, K. Rodgers, Thermogravimetric analytical procedures for characterizing New Zealand and Eastern Australian coals, Thermochimica Acta 286 (1) (1996) 67–74.
  • [14] J. Mráziková, S. Sindler, L. Veverka, J. Macák, Evolution of organic oxygen bonds during pyrolysis of coal, Fuel 65 (3) (1986) 342–345.
  • [15] A. Arenillas, F. Rubiera, J. Pis, Simultaneous thermogravimetric–mass spectrometric study on the pyrolysis behaviour of different rank coals, Journal of Analytical and Applied Pyrolysis 50 (1) (1999) 31–46.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-101fff76-271c-47eb-be45-636270a59edc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.