Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 27, No. 4 | 321--328
Tytuł artykułu

Polarization properties of nematic liquid crystal cell with tapered optical fiber

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, an extended analysis of the polarization properties of a liquid crystal cell with a biconically tapered single-mode telecommunication optical fiber was presented. These properties are a result of a sample geometry and used LC materials. They were analyzed by using two theoretical models based on the matrix decomposition methods, i.e., polar and singular-value one. By measuring Mueller matrices, information about losses, depolarization, dichroism and birefringence was obtained. In the experiment two types of tested samples filled with well-known 6CHBT and E7 liquid crystals were prepared and all optical parameters were shown as the voltage dependence. The tested samples have dichroic properties and for both models calculated PDL is similar and it increases from 2.6 to 6.6 dB for E7 and from 0.4 to 2.7 dB for 6CHBT with voltage changes within the range of 40 – 190 V. Optical losses simultaneously decrease from 30 dB to 27 dB and from 36 dB to 28 dB, respectively. The birefringence properties cannot be directly comparable due to differences between both applied models but voltage fluctuations of these parameters are not significant. These results confirm expected dichroic properties of designed device and complete knowledge about its working principles. Moreover, presented analysis validates usefulness of the singular-value decomposition model applied to dichroic optical fiber elements.
Wydawca

Rocznik
Strony
321--328
Opis fizyczny
Bibliogr. 37 poz., fot., rys., wykr.
Twórcy
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908, Warsaw, Poland, pawel.marc@wat.edu.pl
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908, Warsaw, Poland
autor
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908, Warsaw, Poland
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908, Warsaw, Poland
autor
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908, Warsaw, Poland
Bibliografia
  • [1] T.A. Birks, Y.W. Li, The shape of fiber tapers, J. Lightwave Technol. 10 (1992) 432–438, http://dx.doi.org/10.1109/50.134196.
  • [2] K.A. Stasiewicz, R. Krajewski, L.R. Jaroszewicz, M. Kujawińska, R. Swiłło, Influence of tapering process on changes of optical fiber refractive index distribution along with a structure, Opto-Electron. Rev. 18 (2010) 102–109, http://dx.doi.org/10.2478/s11772-009-0030-y.
  • [3] J. Love, W.M. Henry, W.J. Stewart, R.J. Black, S. Lacroix, F. Gonthier, Tapered single-mode fibers and devices, part 1: adiabaticity criteria, IEE Proc. J. - Optoelectron. 138 (1991) 343–354, http://dx.doi.org/10.1049/ip-j.1991.0060.
  • [4] Y. Yuan, L. Wang, L. Ding, C. Wu, Theory, experiment, and application of optical fiber etching, Appl. Opt. 51 (2012) 5845–5849, http://dx.doi.org/10.1364/AO.51.005845.
  • [5] Y. Wang, Review of long-period fiber gratings written by CO2 laser, J. Appl. Phys. 108 (2010), 081101, http://dx.doi.org/10.1063/1.3493111.
  • [6] K.Q. Kieu, M. Mansuripur, Biconical fiber taper sensors, IEEE Photon. Technol. Lett. 18 (2006) 2239–2241, http://dx.doi.org/10.1109/LPT.2006.884742.
  • [7] H. Latifi, M.I. Zibaii, S.M. Hosseini, P. Jorge, Nonadiabatic tapered optical fiber for biosensor applications, Photonic Sens. 2 (2012) 340–356, http://dx.doi.org/10.1007/s13320-012-0086-z.
  • [8] B.D. Gupta, R.K. Verma, Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications, J. Sens. 2009 (2009) 979761, http://dx.doi.org/10.1155/2009/979761.
  • [9] C. Veilleux, J. Lappiere, J. Bures, Liquid-crystal-clad tapered fibers, Opt. Lett. 11 (1986) 733–735, http://dx.doi.org/10.1364/OL.11.000733.
  • [10] C. Veilleux, R.J. Black, J. Lappiere, L.W. Reeves, Nematic liquid crystal clad tapered optical fiber with temperature sensing properties, J. App. Phys. 67 (1990) 6648–6653, http://dx.doi.org/10.1063/1.345098.
  • [11] T.-J. Chen, S.-H. Chen, Propagation of lower-order modes in a radially anisotropic cylindrical waveguide with liquid crystal cladding, J. Lightwave. Technol. 13 (1995) 1698–1705, http://dx.doi.org/10.1109/50.405312.
  • [12] A. Mahmood, V. Kavungal, S.S. Ahmed, P. Kopcansky, V. Zavisova, G. Farrell, Y. Semenova, Magnetic field sensing using whispering gallery modes in a cylindrical microresonator infiltrated with ferronematic liquid crystal, Opt. Express 25 (2017) 12195–12202, http://dx.doi.org/10.1364/OE.25.012195/.
  • [13] V. Kavungal, G. Farrell, Q. Wu, A.K. Mallik, Y. Semenova, Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal, Opt. Express 26 (2018) 8431–8442, http://dx.doi.org/10.1364/OE.26. 008431.
  • [14] Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, J. Yang, Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application, Opt. Express 25 (2017) 918–926, http://dx.doi. org/10.1364/OE.25.000918.
  • [15] G. Rajan, S. Mathews, G. Farrell, Y. Semenova, A liquid crystal coated tapered photonic crystal fiber interferometer, J. Opt. 13 (2011), 015403, http://dx.doi.org/10.1088/2040-8978/13/1/015403.
  • [16] P. Marć, N. Przybysz, A. Molska, L.R. Jaroszewicz, Photonic crystal fiber transducers for an optical fiber multilevel temperature threshold sensor, J. Lightwave Technol. 36 (4) (2018) 898–903.
  • [17] T.R. Woliński, S. Ertman, P. Lesiak, A.W. Domański, A. Czapla, R. Dąbrowski, E. Nowinowski-Kruszelnicki, J. Wójcik, Photonic liquid crystal fibers – a new challenge for fiber optics and liquid crystals photonics, Opto-Electron. Rev. 14 (2006) 329–334, http://dx.doi.org/10.2478/s11772-006-0045-6.
  • [18] T.R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. Domański, E. Nowinowski-Kruszelnicki, R. Dąbrowski, J. Wójcik, Polarization effects in photonic liquid crystal fibers, Meas. Sci. Technol. 18 (2007) 3061–3069, http://dx.doi.org/10.1364/OFS.2006.ThE58.
  • [19] S. Ertman, K. Rutkowska, T.R. Wolinski, Recent progress in liquid-crystal optical fibers and their applications in photonics, J. Lightwave Technol. 37 (2019) 2516–2526, http://dx.doi.org/10.1109/JLT.2018.2869916.
  • [20] J.F. Algorri, D.C. Zografopoulos, A. Tapetado, D. Poudereux, J.M. Sánchez-Pena, Infiltrated photonic crystal fibers for sensing applications, Sensors 18 (2018) 4263, http://dx.doi.org/10.3390/s18124263.
  • [21] J.E. Moś, M. Florek, R. Wonko, K.A. Stasiewicz, L.R. Jaroszewicz, Influence temperature and electric field on propagation properties of a nematic liquid crystals fiber device, Proc. SPIE 10325 (2017) 103250F, http://dx.doi.org/10.1117/12.2271042.
  • [22] J. Korec, K.A. Stasiewicz, O. Strzeżysz, P. Kula, J. Moś, L.R. Jaroszewicz, Tapered fibre liquid crystal optical device, Proc. SPIE 10681 (2018) 106810G, http://dx. doi.org/10.1117/12.2271042.
  • [23] J.E. Moś, M. Florek, K. Garbat, K.A. Stasiewicz, N. Bennis, L.R. Jaroszewicz, In-line tunable nematic liquid crystal fiber optic device, J. Lightwave Technol. 36 (2018) 891–897, http://dx.doi.org/10.1109/JLT.2017.2771368.
  • [24] H. Tajalli, A. Ghanadzadeh, H. Khoshsima, P. Zhalefar, Electro-optical Kerr effect of nematic mixtures comprised of 6CHBT and 6BOBT, Opto-Electron. Rev. 16 (2008) 386–389, http://dx.doi.org/10.2478/s11772-008-0037-9.
  • [25] N. Tomasovicova, P. Koacansky, M. Koneracka, The structural transitions in 6CHBT- based ferronematic droplets, J. Phys-Condens. Mat. 20 (2008), 204123, http://dx.doi.org/10.1088/0953-8984/20/20/204123.
  • [26] L. Bedjaoui, N. Gogibus, B. Ewen, T. Pakula, X. Coqueret, M. Benmouna, U. Maschke, Preferential solvation of the eutectic mixture of liquid crystals E7 in a polysiloxane, Polymer 45 (2004) 6555–6560, http://dx.doi.org/10.1016/j. polymer.2004.07.050.
  • [27] R. Dąbrowski, J. Dziaduszek, T. Szczuciński, 4-(trans4alkylcyclohexyl)isothio-cyanatobenzenes a new class of low-melting stable nematics, Mol. Cryst. Liq. Cryst. 102 (1984) 155–160, http://dx.doi.org/10.1080/01406568408072065.
  • [28] P. Marć, K.A. Stasiewicz, J. Korec, M. Kwiatkowska, O. Strzeżysz, P. Kula, L.R. Jaroszewicz, Polarization properties of an optical fiber biconical taper with a liquid crystal cladding, Proc. SPIE 11045 (2019) 110450D, http://dx.doi.org/10.1117/12.2520889.
  • [29] D. Goldstein, Polarized Light, second ed., Marcel Dekker Inc., New York & Basel, 2003.
  • [30] J. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, L. Martin, Decomposition algorithm of an experimental Mueller matrix, Opt. Commun. 182 (2009) 692–704, http://dx.doi.org/10.1016/j.optcom.2008.10.076.
  • [31] S. Lu, R.A. Chipman, Interpretation of Mueller matrices based on polar decomposition, J. Opt. Soc. Am. A 13 (1996) 1106–1113, http://dx.doi.org/10.1364/JOSAA.13.001106.
  • [32] R. Ossikovski, Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition, J. Opt. Soc. Am. A 25 (2008) 473–482, http://dx.doi.org/10.1364/JOSAA.25.000473.
  • [33] L.R. Jaroszewicz, P. Marć, In-line fiber-optic polarization analyzers for sensor application, IEEE Sens. J. 3 (2003) 71–79, http://dx.doi.org/10.1109/JSDEN.2003.809022.
  • [34] E. Collett, Polarized Light in Optical Fiber, The PolaWave Group, Lincroft New Jersey, 2003.
  • [35] N. Gosh, M.F.G. Wood, I.A. Vitkin, Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and birefringence, J. Bio. Opt. 13 (2008), http://dx.doi.org/10.1117/1.2960934, 044036-1 14.
  • [36] P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, L.R. Jaroszewicz, Perdeuterated liquid crystals for near infrared applications, Opt. Mat. 60 (2016) 209–213, http://dx.doi.org/10.1016/j.optmat.2016.06.047.
  • [37] J.J. Gil, On optimal filtering of measured Mueller matrices, App. Opt. 55 (2016) 5449–5455, http://dx.doi.org/10.1364/AO.55.005449.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. This work was supported by the Ministry of Science and Higher Education as a statutory activity PBS – 898 and the Ministry of National Defense Republic of Poland project no. GBMON/13-995/2018/WAT. The authors would like to thank, prof. Wiktor Piecek and Przemysław Morawiak from Division of Physics and Technology of Crystals, MUT for their technological support in a liquid crystal cells design.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3ef76084-dfab-4e7a-8b42-3f95dafc2057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.