Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 93, nr 2 | 59--66
Tytuł artykułu

Prediction of thermal conductivities of dry granular media using artificial neural networks

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal conductivity of heterogeneous materials is a complex function not only of properties and amounts of constituents but also of many structural factors. Therefore it is difficult to predict. An attempt to predict thermal conductivity of granular media using the Artificial Neural Network (ANN) model is undertaken in the paper. It was assumed that it is a function of a ratio of thermal conductivities of the constituents, medium porosity as well as the coordination number describing the mean number of the nearest neighbours to each grain. Several configurations of the ANNs were tested while developing the optimal model. As a measure of prediction accuracy the coefficient of linear regression and the mean squared error were used. The optimal model of ANN was found to consist of three hidden layers with eight neurons in each layer for both types of media. Some problems associated with application of ANN were pointed out. The predicted values of thermal conductivity obtained with ANN were compared with values calculated from an analytical formula. It was found that the ANN predictions show identical trends and similar values as the analytical formula for all factors affecting thermal conductivities of the granular media.
Wydawca

Rocznik
Strony
59--66
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
  • Research Center for Fire Protection (CNBOP-PIB), Combustion Processes and Explosions Lab, Poland, mgrabarczyk@cnbop.pl
Bibliografia
  • [1] W. Gogół, A. Próchniak, Thermal conductivity of granular materials, Bulletin of Institute of Heat Engineering 50 (1977) 1–42.
  • [2] A. Gemant, The thermal conductivity of soils, Journal of Applied Physics 21 (1950) 750–752.
  • [3] F. Gori, S. Corasaniti, Theoretical prediction of the soil thermal conductivity at moderately high temperatures, ASME Journal of Heat Transfer 124 (2002) 1001–1008.
  • [4] F. Fayala, H. Alibi, S. Benltoufa, A. Jemni, Neural network for predicting thermal conductivity of knit materials, Journal of Engineered Fibers and Fabrics 3 (4) (2008) 53–60.
  • [5] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks Comput. 2 (5) (1989) 359–366.
  • [6] S. S. Sablani, O.-D. Baik, M. Marcotte, Neural networks for predicting thermal conductivity of bakery products, Journal of Food Science 52 (2002) 299–304.
  • [7] T. N. Singh, S. Sinha, V. Singh, Prediction of thermal conductivity of rock through physico-mechanical properties, Building and Environment 42 (1) (2007) 146–155.
  • [8] D. J. Scott, P. V. Coveney, J. A. Kilner, J. C. H. Rossiny, N. M. N. Alford, Prediction of the functional properties of ceramic materials from composition using artificial neural networks, Journal of the European Society.
  • [9] S. S. Sablani, M. S. Rahman, Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity, Food Research International.
  • [10] R. A. Chayjan, G. A. Montazer, T. T. Hashjin, M. H. Khoshtaghaza, B. Ghobadian, Prediction of pistachio thermal conductivity using artificial neural network approach, International Journal of Agriculture & Biology 9 (2007) 816–820.
  • [11] A. M. Hussain, M. Rahman, Thermal conductivity prediction of fruits and vegetables using neutral networks, International Journal of Food Properties 2 (1999) 121–138.
  • [12] R. A. Crane, R. I. Vachon, A prediction of the bounds on the effective thermal conductivity of granular materials, International Journal of Heat & Mass Transfer 20 (1977) 711–723.
  • [13] B. Goutorbe, F. Lucazeau, A. Bonneville, Using neural networks to predict thermal conductivity from geophysical well logs, Geophysical Journal International 166 (1) (2006) 115–125.
  • [14] M. C. Bishop, Neutral network and their applications, Review in Scientific Instruments 64 (1994) 1803–1831.
  • [15] J. E. Dayhoff, Neural Networks Principles, Prentice-Hall International, 1990.
  • [16] T. Khanna, Foundations of Neural Networks, Addison-Wesley Publishing Company, 1990.
  • [17] T. N. Singh, Artificial neural network approach for prediction and control of ground vibrations in mines, Mining Technology (Trans. Inst. Min. Metall. A) 113 (2004) A251–A257.
  • [18] T. N. Singh, A. K. Verma, Prediction of creep characteristics of rock under varying environment, Environmental Geology 48 (2005) 559–568.
  • [19] S. Sinha, T. Singh, V. Singh, A. K. Verma, Epoch determination for neural network by self organized map, Computational Geosciences 14 (2010) 199–207.
  • [20] P. Furmański, T. Wisniewski, P. Łapka, Study on a degree of degradation of design materials under different ambient interactions, in: W. Kurnik (Ed.), Nonconventional materials in diagnostics and active reduction of vibration, Scientific Publications of Institute of Exploitation Technology, Warsaw–Radom, 2008, pp. 207–233, in Polish.
  • [21] S. Azizi, C. Moyane, A. Degiovanni, Approche experimentale et theorique de la conductiveite thermique des milieux poreux humides, International Journal of Heat & Mass Transfer.
  • [22] K.W. Jackson,W. Z. Black, A unit cell model for predicting the thermal conductivity of a granular medium containing an adhesive binder, International Journal of Heat and Mass Transfer.
  • [23] R. N. Pande, F. Gori, Effective media formation and conduction through unsaturated granular materials, International Journal of Heat and Mass Transfer.
  • [24] A. Stefański, Thermal conductivity of civil engineering materials, Polish Scientific Publisher PWN, 1975, in Polish.
  • [25] V. R. Tarnawski, W. H. Leong, Thermal conductivity of soils at very low moisture content and moderate temperatures, Transport in Porous Media 41 (2) (2000) 137–147. doi:10.1023/A:1006738727206.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7d4be24f-89a7-485a-aaca-03604caa1dfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.