Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 18 | 3--6
Tytuł artykułu

Clash Royale Challenge: how to select training decks for win-rate prediction

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (14 ; 01-04.09.2019 ; Leipzig, Germany)
Języki publikacji
EN
Abstrakty
EN
We summarize the sixth data mining competition organized at the Knowledge Pit platform in association with the Federated Conference on Computer Science and Information Systems series, titled Clash Royale Challenge: How to Select Training Decks for Win-rate Prediction. We outline the scope of this challenge and briefly present its results. We also discuss the problem of acquiring knowledge about new notions from video games through an active learning cycle. We explain how this task is related to the problem considered in the challenge and share results of experiments that we conducted to demonstrate usefulness of the active learning approach in practice.
Wydawca

Rocznik
Tom
Strony
3--6
Opis fizyczny
Bibliogr. 13 poz., rys., wz., wykr.
Twórcy
  • Institute of Informatics, University of Warsaw, Poland, janusza@mimuw.edu.pl
  • Esensei Sp. z o.o., Poland
  • Institute of Informatics, University of Warsaw, Poland
  • Esensei Sp. z o.o., Poland
  • Institute of Informatics, University of Warsaw, Poland
  • Esensei Sp. z o.o., Poland
Bibliografia
  • 1. S. Yan, K. Chaudhuri, and T. Javidi, “Active learning from imperfect labelers,” in Proceedings of the 30th International Conference on Neural Information Processing Systems, ser. NIPS’16. USA: Curran Associates Inc., 2016, pp. 2136–2144. [Online]. Available: http://dl.acm.org/citation.cfm?id=3157096.3157335
  • 2. S. H. Bach, D. Rodriguez, Y. Liu, C. Luo, H. Shao, C. Xia, S. Sen, A. Ratner, B. Hancock, H. Alborzi, R. Kuchhal, C. Ré, and R. Malkin, “Snorkel drybell: A case study in deploying weak supervision at industrial scale,” in SIGMOD Conference. ACM, 2019, pp. 362–375.
  • 3. B. Settles, Active Learning. Morgan & Claypool Publishers, 2012.
  • 4. E. Lughofer, “Hybrid active learning for reducing the annotation effort of operators in classification systems,” Pattern Recogn., vol. 45, no. 2, pp. 884–896, Feb. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.patcog.2011.08.009
  • 5. W. Cai, Y. Zhang, Y. Zhang, S. Zhou, W. Wang, Z. Chen, and C. Ding, “Active learning for classification with maximum model change,” ACM Trans. Inf. Syst., vol. 36, no. 2, pp. 15:1–15:28, Aug. 2017. [Online]. Available: http://doi.acm.org/10.1145/3086820
  • 6. H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,” in Proceedings of the Twenty-first International Conference on Machine Learning, ser. ICML ’04. New York, NY, USA: ACM, 2004, pp. 79–. [Online]. Available: http://doi.acm.org/10.1145/1015330.1015349
  • 7. K. Konyushkova, R. Sznitman, and P. Fua, “Learning active learning from real and synthetic data,” CoRR, vol. abs/1703.03365, 2017. [Online]. Available: http://arxiv.org/abs/1703.03365
  • 8. C. Zhang and K. Chaudhuri, “Active learning from weak and strong labelers,” in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, pp. 703–711. [Online]. Available: http://dl.acm.org/citation.cfm?id=2969239.2969318
  • 9. A. Janusz, T. Tajmajer, M. Świechowski, Ł. Grad, J. Puczniewski, and D. Ślęzak, “Toward an intelligent HS deck advisor: Lessons learned from aaia’18 data mining competition,” in Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018., M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2018, pp. 189–192. [Online]. Available: https://doi.org/10.15439/2018F386
  • 10. A. Janusz, D. Ślęzak, S. Stawicki, and K. Stencel, “SENSEI: an intelligent advisory system for the esport community and casual players,” in 2018 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018, Santiago, Chile, December 3-6, 2018. IEEE Computer Society, 2018, pp. 754–757. [Online]. Available: https://doi.org/10.1109/WI.2018.00010
  • 11. A. J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.
  • 12. D. Ruta, L. Cen, and Q. H. Vu, “Greedy incremental support vector regression,” in Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, FedCSIS 2019, Leipzig, Germany, September 1-4, 2019., M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2019.
  • 13. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006.
Uwagi
1. This research was co-funded by Smart Growth Operational Programme 2014-2020, financed by European Regional Development Fund under GameINN project POIR.01.02.00-00-0184/17, operated by National Centre for Research and Development in Poland.
2. Track 1: Artificial Intelligence and Applications
3. Technical Session: 14th International Symposium Advances in Artificial Intelligence and Applications
4. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d36cf799-a80e-4782-90bb-b2f7f67cfc85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.