Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 66, no. 1 | 9--29
Tytuł artykułu

Continued fractions and polynomials related to hyperbinary representations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Schinzel recently showed that the nth Stern polynomial of Klavžar et al. is the numerator of a certain finite continued fraction. This was subsequently extended by Mansour to q-Stern polynomials. We extend these results further to a 2-parameter bivariate analogue of the sequence of Stern polynomials which arise naturally in the characterization of hyperbinary representations of a given integer. In the process we define a class of companion polynomials with which we can determine the denominators of the continued fractions in question.
Wydawca

Rocznik
Strony
9--29
Opis fizyczny
Bibliogr. 15 poz., tab.
Twórcy
autor
  • Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada, dilcher@mathstat.dal.ca
autor
Bibliografia
  • [1] B. Bates and T. Mansour, The q-Calkin-Wilf tree, J. Combin. Theory Ser. A 118 (2011), 1143-1151.
  • [2] K. Dilcher and L. Ericksen, Hyperbinary expansions and Stern polynomials, Electron. J. Combin. 22 (2015), paper 2.24, 18 pp.
  • [3] K. Dilcher and L. Ericksen, Continued fractions and Stern polynomials, Ramanujan J. 45 (2018), 659-681.
  • [4] K. Dilcher and L. Ericksen, Generalized Stern polynomials and hyperbinary representations, Bull. Polish Acad. Sci. Math. 65 (2017), 11-28.
  • [5] K. Dilcher and K. B. Stolarsky, A polynomial analogue to the Stern sequence, Int. J. Number Theory 3 (2007), 85-103.
  • [6] M. Gawron, A note on the arithmetic properties of Stern polynomials, Publ. Math. Debrecen 85 (2014), 453-465.
  • [7] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, MA, 1994.
  • [8] S. Klavžar, U. Milutinović, and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007), 86-95.
  • [9] T. Mansour, q-Stern polynomials as numerators of continued fractions, Bull. Polish Acad. Sci. Math. 63 (2015), 11-18.
  • [10] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 2011, http://oeis.org.
  • [11] B. Reznick, Some binary partition functions, in: Analytic Number Theory: Proceedings of a Conference in Honor of Paul T. Bateman (B. C. Berndt et al., eds.), Birkhäuser, Boston, 1990, 451-477.
  • [12] A. Schinzel, On the factors of Stern polynomials (remarks on the preceding paper of M. Ulas), Publ. Math. Debrecen 79 (2011), 83-88.
  • [13] A. Schinzel, Stern polynomials as numerators of continued fractions, Bull. Polish Acad. Sci. Math. 62 (2014), 23-27.
  • [14] R. P. Stanley and H. S. Wilf, Rening the Stern diatomic sequence, preprint, 2010, http://www-math.mit.edu/~rstan/papers/stern.pdf.
  • [15] M. Ulas, On certain arithmetic properties of Stern polynomials, Publ. Math. Debrecen 79 (2011), 55-81.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4f448e11-f9ec-49d0-a3e9-2c31a0cccf8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.