Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Uzasadnianie i ocena stabilności parametrów systemu podziemnego dla wydobycia wapienia: studium przypadku złoża Nowa Odesa, Ukraina
Języki publikacji
Abstrakty
Due to the russian federation aggression against Ukraine, the infrastructure of many settlements has undergone significant destruction, so in the post-war period, limestone can become a reliable and useful resource for its reconstruction. A significant number of limestone deposits in southern Ukraine are suitable for the production of wall (block) stone, but the geotechnical conditions of many mining sites require the use of an underground mining method. To study the mining system parameters of the Nova Odesa sawn limestone deposit, analytical and calculation methods are used based on known and proven hypotheses of stable spans and pillars, as well as verification by numerical modeling based on the finite element method in the SolidWorks software package. It has been determined that with a change in the ceiling thickness by 50% (from 0.8 to 1.2 m), the safe width of the chamber in the absence tensile stresses in the sawn limestone roof, under given mining-geological and mining-technical conditions of mining operations, increases by 22%. It has been revealed that the area of 25.0 m2 corresponds to the required safety factor of the square-shaped supporting pillar. It has been shown by numerical modeling that under the conditions of the Nova Odesa deposit, the load on a 5×5 m supporting pillar will reach 26% of its load-bearing capacity, and the extraction chamber ceiling is in a stable state without the formation of tensile stresses. The research results are useful for substantiating and assessing the stability of the room-and-pillar mining system elements with supporting pillars in the underground mining of sawn limestone or other mineral deposits.
W wyniku agresji federacji rosyjskiej na Ukrainę infrastruktura wielu osiedli uległa znacznemu zniszczeniu, dlatego w okresie powojennym wapień może stać się niezawodnym i użytecznym surowcem do jej odbudowy. Znaczna liczba złóż wapienia na południowej Ukrainie nadaje się do produkcji kamienia ściennego (blokowego), jednak warunki geotechniczne wielu miejsc wydobywczych wymagają zastosowania metody urabiania podziemnego. Do badania parametrów systemu wydobywczego złoża wapienia Nowa Odessa stosowane są metody analityczne i obliczeniowe oparte na znanych i sprawdzonych hipotezach stabilnych przęseł i filarów oraz weryfikacja poprzez modelowanie numeryczne w oparciu o metodę elementów skończonych w pakiecie oprogramowania SolidWorks. Stwierdzono, że przy zmianie grubości stropu o 50% (z 0,8 na 1,2 m) bezpieczna szerokość komory przy braku naprężeń rozciągających w stropie, w danych warunkach górniczo-geologicznych i górniczo-technicznych działalności wydobywczej wzrasta o 22%. Stwierdzono, że powierzchnia 25,0 m2 odpowiada wymaganemu współczynnikowi bezpieczeństwa kwadratowego słupa nośnego. Modelowanie numeryczne wykazało, że w warunkach złoża Nova Odesa obciążenie filaru nośnego o wymiarach 5m×5m osiągnie 26% jego nośności, a strop komory wydobywczej jest w stanie stabilnym bez powstawanie naprężeń rozciągających. Wyniki badań są przydatne do uzasadnienia i oceny stateczności elementów systemu urabiania komorowo-filarowego wraz z filarami oporowymi w podziemnym wydobyciu wapienia lub innych złóż kopalin.
Czasopismo
Rocznik
Tom
Strony
79--89
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
- Dnipro University of Technology; 19 Yavornytskoho Ave., Dnipro, Ukraine, petlyovanyi1986@gmail.com
autor
- Dnipro University of Technology; 19 Yavornytskoho Ave., Dnipro, Ukraine, saik.nmu@gmail.com
autor
- Dnipro University of Technology; 19 Yavornytskoho Ave., Dnipro, Ukraine, lvg.nmu@gmail.com
autor
- Dnipro University of Technology; 19 Yavornytskoho Ave., Dnipro, Ukraine, kateryna.sai@gmail.com
autor
- Dnipro University of Technology; 19 Yavornytskoho Ave., Dnipro, Ukraine, chernyaev.aleksey82@ukr.net
Bibliografia
- 1. Henckens, T. (2021). Scarce mineral resources: Extraction, consumption and limits of sustainability. Resources, Conservation and Recycling, 169, 105511. https://doi.org/10.1016/j.resconrec.2021.105511
- 2. Nassani, A.A., Aldakhil, A.M., & Zaman, K. (2021). Ecological footprints jeopardy for mineral resource extraction: Efficient use of energy, financial development and insurance services to conserve natural resources. Resources Policy, 74, 102271. https://doi.org/10.1016/j.resourpol.2021.102271
- 3. Bitimbayev, M.Zh., Rysbekov, K.B., Akhmetkanov, D.K., Kunayev, M.S., & Elemesov, K.K. (2022). The role and importance of chemical elements clarks in the practical expanded reproduction of mineral resources. Engineering Journal of Satbayev University, 1(144), 47-54. https://doi.org/10.51301/ejsu.2022.i1.08
- 4. Christmann, P. (2017). Towards a More Equitable Use of Mineral Resources. Natural Resources Research, 27(2), 159-177. https://doi.org/10.1007/s11053-017-9343-6
- 5. Mineral resource governance for sustainable development. (2020). Mineral Resource Governance in the 21st Century. https://doi.org/10.18356/5db747b4-en
- 6. Markevych, K., Maistro, S., Koval, V., & Paliukh, V. (2022). Mining sustainability and circular economy in the context of economic security in Ukraine. Mining of Mineral Deposits, 16(1), 101-113. https://doi.org/10.33271/ mining16.01.101
- 7. Carran, D., Hughes, J., Leslie, A., & Kennedy, C. (2012). A short history of the use of lime as a building material beyond Europe and North America. International Journal of Architectural Heritage, 6(2), 117-146. https://doi.org/1 0.1080/15583058.2010.511694
- 8. Brenner, J. (2022). Some ideas for a post-war recovery of Ukrainian cities. Urban Research & Practice, 1-7. https:// doi.org/10.1080/17535069.2022.2097646
- 9. Bergmann, J., & Romanyshyn, I. (2022). Rebuilding Ukraine: How the EU should support Ukraine's reconstruction and recovery (No. 6/2022). IDOS Policy Brief, -1-12. https://doi.org/10.23661/ipb6.2022
- 10. Gul, E. (2022). Mineral extraction and processing industries: Do they have socioeconomic benefits in a developing country scenario?. Mining of Mineral Deposits, 16(1), 32-42. https://doi.org/10.33271/mining16.01.032
- 11. Nurlybayev, R.E., Zhuginisov, M.T., Zhumadilova, Z.O., Orynbekov , Y.S., Khamza, E.E., & Sangulova, I.B. (2021). Investigation of the effect of diatomite and bentonite clays on the properties of local loam-based products. Engineering Journal of Satbayev University, 143(4), 180-195. https://doi.org/10.51301/vest.su.2021.i4.23
- 12. Chang, Z., Long, G., Xie, Y., & Zhou, J. L. (2022). Recycling sewage sludge ash and limestone for sustainable cementitious material production. Journal of Building Engineering, 49, 104035. https://doi.org/10.1016/j.jobe.2022.104035
- 13. Mineralni resursy Ukrainy. (2020). Shchorichnyk, Derzhavne naukovo-vyrobnyche pidpryiemstvo ≪Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy≫, Kyiv, 270.
- 14. Peryt, T.M., Durakiewicz, T., Peryt, D., & Poberezhsky, A. (2012). Carbon and oxygen isotopic composition of the Middle Miocene Badenian gypsum-associated limestones of West Ukraine. Geologica Acta, 10(4), 319-332. https:// doi.org/10.1344/105.000001753.
- 15. Trach, Y., Trach, R., Kalenik, M., Koda, E., & Podlasek, A. (2021). A Study of Dispersed, Thermally Activated Limestone from Ukraine for the Safe Liming of Water Using ANN Models. Energies, 14(24), 8377. https://doi. org/10.3390/en14248377
- 16. Rysbekov, K., Bitimbayev, M., Akhmetkanov, D., Yelemessov, K., Barmenshinova, M., Toktarov, A., & Baskanbayeva, D. (2022). Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction. Mining of Mineral Deposits, 16(2), 64-72. https://doi.org/10.33271/mining16.02.064
- 17. Rahimi, B., Sharifzadeh, M., & Feng, X. T. (2021). A comprehensive underground excavation design (CUED) methodology for geotechnical engineering design of deep underground mining and tunneling. International Journal of Rock Mechanics and Mining Sciences, 143, 104684. https://doi.org/10.1016/j.ijrmms.2021.104684
- 18. Rana, A., Kalla, P., & Csetenyi, L.J. (2016). Recycling of dimension limestone industry waste in concrete. International Journal of Mining, Reclamation and Environment, 31(4), 231-250. https://doi.org/10.1080/17480930.2016.11 38571
- 19. Petlovanyi, M.V, Zubko, S.A, Popovych, V.V, & Sai, K.S. (2020). Physicochemical mechanism of structure formation and strengthening in the backfill massif when filling underground cavities Voprosy Khimii Khimicheskoi Tekhnologii, 6, 142-150 https://doi.org/10.32434/0321-4095-2020-133-6-142-150
- 20. Panesar, D.K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866
- 21. Doina-Cezara, A. (2021). Use of Limestone Blocks in Constructions in the Republic of Moldova. Bulletin of the Polytechnic Institute of Iași. Construction. Architecture Section, 67(1), 47–56. https://doi.org/10.2478/bipca- 2021-0004
- 22. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040
- 23. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858
- 24. Ghazdali, O., Moustadraf, J., Tagma, T., Alabjah, B., & Amraoui, F. (2021). Study and evaluation of the stability of underground mining method used in shallow-dip vein deposits hosted in poor quality rock. Mining of Mineral Deposits, 15(3), 31-38. https://doi.org/10.33271/mining15.03.031
- 25. Iannacchione, A., Miller, T., Esterhuizen, G., Slaker, B., Murphy, M., Cope, N., & Thayer, S. (2020). Evaluation of stress-control layout at the Subtropolis Mine, Petersburg, Ohio. International Journal of Mining Science and Technology, 30(1), 77-83. https://doi.org/10.1016/j.ijmst.2019.12.009
- 26. Petlovanyi, M, Medianyk, V., Sai, K., Malashkevych, D., & Popovych, V. (2021). Geomechanical substantiation of the parameters for coal auger mining in the protecting pillars of mine workings during thin seams development. ARPN Journal of Engineering and Applied Sciences, 16(15), 1572-1582
- 27. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029
- 28. Kun, M. (2014). Evaluation and applications of empirical approaches and numerical modeling of an underground limestone quarry with room and pillar design. Journal of Mining Science, 50(1), 126-136. https://doi.org/10.1134/ s1062739114010189
- 29. Esterhuizen, G. S., Dolinar, D. R., & Ellenberger, J. L. (2008). Assessment of Stable and Failed Pillars in Underground Limestone Mines. Mining Engineering, 61(11), 43-48.
- 30. Uteshov, Y., Galiyev, D., Galiyev, S., Rysbekov, K., & Nаuryzbayeva, D. (2021). Potential for increasing the efficiency of design processes for mining the solid mineral deposits based on digitalization and advanced analytics. Rozrobka Rodovyshch, 15(2), 102-110. https://doi.org/10.33271/mining15.02.102
- 31. Ulanova, N., Sdvyzhkova, O., & Prikhodko, V. (2014). Optimization of room-and-pillar method parameters under conditions of limestone rocks. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 511-516. https://doi.org/10.1201/b17547-86
- 32. El-Latif, A., Mohamed, Y., Awad, T., & Aly, R. (2022). Influence of Swelling on Shear Strength of Shale-Limestone Interface. Rudarsko Geolosko Naftni Zbornik, 37(5), 75-82. https://doi.org/10.17794/rgn.2022.5.7
- 33. Sakhno, I., Liashok, Ia., Sakhno, S., & Isaienkov, O. (2022). Method for controlling the floor heave in mine roadways of underground coal mines. Mining of Mineral Deposits, 16(4), 1-10. https://doi.org/10.33271/mining16.04.001
- 34. Pysmenniy, S., Shvager, N., Shepel, O. Kovbyk, K., & Dolgikh O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi. org/10.1051/e3sconf/202016602006
- 35. Shaffiee Haghshenas, S., Mikaeil, R., Esmaeilzadeh, A., Careddu, N., & Ataei, M. (2022). Statistical Study to Evaluate Performance of Cutting Machine in Dimension Stone Cutting Process. Journal of Mining and Environment, 13(1), 53-67. https://doi.org/10.22044/jme.2022.11362.2118
- 36. Demchenko, I.I., & Spivakov, F.P. (1982). Povyshenie effektivnosti i bezopasnosti podzemnoy razrabotki pilnykh izvestnyakov. Moldovenyaske, 192.
- 37. Mikhaylov, Yu.I., Spivakov, F.P., & Yakubets, A.A. (1986). Tekhnologiya i mekhanizatsiya dobychi pilnogo kamnya podzemnym sposobom. Nedra, 167.
- 38. Ulanova, N., Sdvyzhkova & V. Prikhodko. Optimization of room-and-pillar method parameters under conditions of limestone rocks. (2014). Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 523-528. https:// doi.org/10.1201/b17547-86
- 39. Kumar, A., Kumar, R., Singh, A.K., Ram, S., Singh, P.K., & Singh, R. (2017). Numerical modelling-based pillar strength estimation for an increased height of extraction. Arabian Journal of Geosciences, 10(18), 411. https://doi. org/10.1007/s12517-017-3179-6
- 40. Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into Impact of Leaving Waste Rocks in the Mined-Out Space on the Geomechanical State of the Rock Mass Surrounding the Longwall Face. Energies, 15(24), 9522. https://doi.org/10.3390/en15249522
- 41. Takhanov, D., Muratuly, B., Rashid, Z., & Kydrashov, A. (2021). Geomechanics substantiation of pillars development parameters in case of combined mining the contiguous steep ore bodies. Mining of Mineral Deposits, 15(1), 50-58. https://doi.org/10.33271/mining15.01.050
- 42. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining, 607. https://doi.org/10.1201/b19901
- 43. Dychkovskyi, R., Shavarskyi, Ia., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Cabana, E. (2020). Research into stressstrain state of the rock mass condition in the process of the operation of double-unit longwalls. Mining of Mineral Deposits, 14(2), 85-94. https://doi.org/10.33271/mining14.02.085
- 44. Labuz, J.F., & Zang, A. (2012). Mohr-Coulomb failure criterion. Rock mechanics and rock engineering,
- 45, 975-979. https://doi.org/10.1007/s00603-012-0281-7 45. NPAOP 0.00-1.01-85. (1985). Iedyni pravyla okhorony nadr pry rozrobtsi rodovyshch tverdykh korysnykh kopalyn.
- 46. Spyvakov, F.P. (1980). Mekhanyzatsyia rabot na yzvestniakovykh shakhtakh. Kyshynev: Kartia Moldoveniaske, 91.
- 47. DSTU B V.2.7-246:2010. (2010). Budivelni materialy. Kameni bortovi i stinovi z hirskykh porid. Tekhnichni umovy.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-17105537-d1af-409f-8e41-9fbaa0c7f15e