Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 7 | 78--91
Tytuł artykułu

Effect of Nano and Micro size of Copper Oxide on the Properties of Thermoplastic Elastomer

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the research was to assess the feasibility of utilizing copper oxide particles as a reinforcing and conductive additive in a thermoplastic elastomer. This study focused on examining the influence of particle size on primary strength characteristics and aging resistance, as well as conducting an impedance measurement to gauge the impact of copper oxide particles on electrical conductivity. The findings of the study revealed that incorporating copper oxide particles at the nanoscale leads to enhanced mechanical and conductive properties in comparison to both the base material and the composite with microparticles. However, it was observed that the addition of microparticles in a 5% by weight ratio failed to provide significant improvements in strength and electrical conductivity. Additionally, the study found that the incorporation of copper oxide nanoparticles improves the aging resistance of the composite.
Wydawca

Rocznik
Strony
78--91
Opis fizyczny
Bibliogr. 50 poz., fig., tab.
Twórcy
  • SHM System Sp. z o.o., Sp. kom. Libertów, ul. Jana Pawła II 82A, 30-444 Kraków, Poland, kb@shmsystem.pl
Bibliografia
  • 1. Shanks R, Kong I. Thermoplastic elastomers. El-Sonbati AZ, editor. Thermoplastic elastomers. 2012; 137–153.
  • 2. Sreekanth MS, Bambole VA, Mhaske ST, Mahanwar PA. Effect of concentration of mica on properties of polyester thermoplastic elastomer composites. J Miner Mater Charact Eng. 2009; 8(4): 271–82.
  • 3. Veli D, Nursel K, Osman G. Effects of fillers on the properties of thermoplastic elastomers. SPE Plast Res Online, [Internet]. Available from: https://www.yumpu.com/en/document/read/16864270/effects-of-fillers-on-the-properties-of-thermoplastic-elastomers.
  • 4. Wongtimnoi K, Guiffard B, Bogner-Van De Moortele A, Seveyrat L, Gauthier C, Cavaille J. Improvement of electrostrictive properties of a polyetherbased polyurethane elastomer filled with conductive carbon black. Compos Sci Technol. 2011; 71(6): 885–8.
  • 5. Babu RR, Naskar K. Recent developments on thermoplastic elastomers by dynamic vulcanization. 2010; (July 2010): 219–47.
  • 6. Fang C, Zhang Y, Wang W, Wang Z, Jiang F, Wang Z. Fabrication of copolymer-grafted multiwalled carbon nanotube composite thermoplastic elastomers filled with unmodified MWCNTs as additional nanofillers to significantly improve both electrical conductivity and mechanical properties. Ind Eng Chem Res. 2015; 54(50): 12597–606.
  • 7. Sreekanth MS, Bambole VA, Mhaske ST, Mahanwar PA. Effect of particle size and concentration of flyash on properties of polyester thermoplastic elastomer composites. J Miner Mater Charact Eng. 2009; 8(3): 237–48.
  • 8. Jiang F, Zhang Y, Fang C, Wang Z, Wang Z. From soft to strong elastomers: The role of additional crosslinkings in copolymer-grafted multiwalled carbon nanotube composite thermoplastic elastomers. RSC Adv [Internet]. 2014; 4(104): 60079–85. Available from: http://dx.doi.org/10.1039/C4RA11626G.
  • 9. Costa P, Silvia C, Viana JC, Lanceros Mendez S. Extruded thermoplastic elastomers styrene-butadiene-styrene/carbon nanotubes composites for strain sensor applications. Compos Part B Eng [Internet]. 2014; 57: 242–9. Available from: http://dx.doi.org/10.1016/j.compositesb.2013.10.006.
  • 10. Tagliabue A, Eblagon F, Clemens F. Analysis of styrene-butadiene based thermoplastic magnetorheological elastomers with surface-treated iron particles. Polymers (Basel). 2021; 13(10).
  • 11. Wang H, Lu W, Wang W, Shah PN, Misichronis K, Kang NG, Mays J. Design and synthesis of multigraft copolymer thermoplastic elastomers: Superelastomers. Macromol Chem Phys. 2018; 219(1): 1–11.
  • 12. Ilčíková M, Mrlík M, Mosnáček J. Thermoplastic elastomers with photo-actuating properties. In: Das CK, editor. Thermoplastic Elastomers. IntechOpen; 2015; 115–43.
  • 13. Austin J, Kontopoulou M. Effect of organoclay content on the rheology, morphology, and physical properties of polyolefin elastomers and their blendswith polypropylene. Polym Eng Sci. 2006; 46(11): 1491–501.
  • 14. Nalini R, Nagarajan S, Reddy BSR. Thermoplastic polyolefin nanocomposites: effect of mechanical, thermal, and morphological properties. J Reinf Plast Compos. 2011; 30(4): 319–24.
  • 15. Ahmed MA, El-Shafie M, Kandil UF, Taha MMR. Improving the mechanical properties of thermoplastic polyolefins using recycled low-density polyethylene and multi-walled carbon nanotubes. Egypt J Chem. 2021; 64(5): 2517–23.
  • 16. Pereira JF, Ferreira DP, Bessa J, Matos J, Cunha F, Araújo I, Luís F. Silva, Pinho E, Fangueiro R. Mechanical performance of thermoplastic olefin composites reinforced with coir and sisal natural fibers: Influence of surface pretreatment. Polym Compos. 2019; 40(9): 3472–81.
  • 17. Tjong S., Ruan Y. Fracture Behavior of Thermoplastic Polyolefin/Clay Nanocomposites. J Appl Polym Sci. 2008; 110: 864–71.
  • 18. Rajaee P, Ghasemi FA, Fasuhi M, Sadeghi A, Kakeh B. Effect of fumed silica and halloysite nanoparticles on the microstructure, mechanical, and fracture properties of thermoplastic polyolefin elastomer toughened polypropylene. Polym Compos. 2022; 43(7): 4495.
  • 19. Mallick K, Witcomb MJ, Scurrell MS. Optical and micro-analytical study of a copper-conjugated polymer composite. Phys Status Solidi Appl Mater Sci. 2007; 204(7): 2263–9.
  • 20. Bazan P, Gajda M, Nosal P, Bąk A, Setlak K, Łach M. The influence of copper oxide particle size on the properties of epoxy resin. Appl Sci. 2024; 14(6).
  • 21. Bortolussi V, Figliuzzi B, Willot F, Faessel M, Jeandin M. Electrical conductivity of metal–polymer cold spray composite coatings onto carbon fiberreinforced polymer. J Therm Spray Technol. 2020; 29(4): 642–56.
  • 22. Tor-Świątek A, Garbacz T. Effect of abiotic degradation on the colorimetric analysis, mechanical properties and morphology of PLA composites with linen fibers. Adv. Sci. Technol. Res. J. 2021; 15(1): 99–109.
  • 23. Suhailath K, Thomas M, Ramesan MT. Studies on mechanical properties, dielectric behavior and DC conductivity of neodymium oxide/poly (butyl methacrylate) nanocomposites. Polym Polym Compos. 2021; 29(8): 1200–11.
  • 24. Zhou G, Movva S, Lee J. Preparation and properties of nanoparticle and long-fiber-reinforced unsaturated polyester composites. Polym Compos. 2009; 30(7): 861–5.
  • 25. Petrova VA, Nud’Ga LA, Bochek AM, Yudin VE, Gofman IV., Elokhovskii VY, Dobrovol’skaya IP. Specific features of chitosan-montmorillonite interaction in an aqueous acid solution and properties of related composite films. Polym Sci - Ser A. 2012; 54(3): 224–30.
  • 26. Pazmiño Betancourt BA, Douglas JF, Starr FW. Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite. Soft Matter. 2013; 9(1): 241–54.
  • 27. Kareem S, Al-Ansari LS, Gömze LA. Modeling of modulus of elasticity of nano-composite materials: review and evaluation. J Phys Conf Ser. 2022; 2315(1).
  • 28. Li J, Ma PC, Chow W.S, To CK, Tang BZ, Kim JK. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 2007; 17(16): 3207–3215.
  • 29. Jin J, Wu J, Frischknecht AL. Modeling microscopic morphology and mechanical properties of block copolymer/nanoparticle composites, Macromolecules. 2009; 42(19):7537–7544.
  • 30. Chiu PH, Cheng WH, Lee MT, Yasuda K, Song JM. Low-thermal-budget photonic sintering of hybrid pastes containing submicron/nano cuo/cu2o particles. Nanomaterials. 2021; 11(7).
  • 31. Abbas B. Processing of nano-micro copper materials for the production of conductive circuits Bahaa Hanou Abbas [Internet]. 2021. Available from: file:///C:/Users/Bahaa Abbas/OneDrive - Swansea University/Bahaa pc/PhD/Thesis final submission/Submitted final/Thesis FINAL (Bahaa Abbas).pdf.
  • 32. Li F, Ye C, Huang Y, Liu X, Fei B. Incorporation of in situ synthesized nano-copper modified phenolformaldehyde resin to improve the mechanical properties of Chinese fir: A preliminary study. Polymers (Basel). 2021; 13(6).
  • 33. Sharifi MJ, Azadi M, Azadi M. Fabrication of heattreated nano-clay-composite for improving highcycle fatigue properties of AlSiCu aluminum alloy under stress-controlled fully-reversed bending loads. Proc Inst Mech Eng Part C J Mech Eng Sci. 2021; 235(19): 4143–60.
  • 34. Abenojar J, Pantoja M, Martínez MA, Carlos del Real J. Aging by moisture and/or temperature of epoxy/SiC composites: Thermal and mechanical properties. J Compos Mater. 2014; 49(24).
  • 35. Azizan A, Johar M, Karam Singh SS, Abdullah S, Koloor SSR, Petrů M, et al. An extended thicknessdependent moisture absorption model for unidirectional carbon/epoxy composites. Polymers (Basel). 2021 Feb 1; 13(3): 1–13.
  • 36. Frigione M. Assessment of the Ageing and Durability of Polymers. Polymers (Basel). 2022; 14: 1934.
  • 37. Liang J, Pochiraju K V. Oxidation-induced damage evolution in a unidirectional polymer matrix composite. J Compos Mater. 2015; 49(11): 1393–406.
  • 38. Goncharova DA, Kharlamova TS, Lapin IN, Svetlichnyi VA. Chemical and Morphological Evolution of Copper Nanoparticles Obtained by Pulsed Laser Ablation in Liquid. J Phys Chem C. 2019; 123(35): 21731–42.
  • 39. Palza H, Delgado K, Moraga N, Molina S-HW. Polypropylene in the Melt State as a Medium for In Situ Synthesis of Copper Nanoparticles. AIChE J. 2014; 60(10): 3406–11.
  • 40. Palza H, Delgado K, Pinochet I. Improving the metal ion release from nanoparticles embedded in a polypropylene matrix for antimicrobial applications. J Appl Polym Sci. 2014; 132(1): 1–8.
  • 41. Marani D, D’Epifanio A, Traversa E, Miyayama M, Licoccia S. Titania nanosheets (TNS)/Sulfonated poly ether ether ketone (SPEEK) nanocomposite proton exchange membranes for fuel cells. Chem Mater. 2010; 22(3): 1126–33.
  • 42. Li AP, Müller F, Bimer A, Nielsch K, Gösele U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys. 1998; 84(11): 6023–6.
  • 43. Xu N, Sarkar DK, Grant Chen X, Zhang H, Tong W. Superhydrophobic copper stearate/copper oxide thin films by a simple one-step electrochemical process and their corrosion resistance properties. RSC Adv. 2016; 6(42): 35466–78.
  • 44. Wang B, Ci S, Zhou M, Di C, Yu J, Zhu B, Qiao K. Effects of hygrothermal and salt mist ageing on the properties of epoxy resins and their composites. Polymers (Basel). 2023; 15(3).
  • 45. Wang J, Wang Z, Yan N, Han Z, Chang Y, Wang J, Li Q. Clarifying the chemical reactions of the weakening of adhesion between epoxy resin and aluminum by molecular dynamic simulation and experiment. Front Mater. 2022; 9(August): 1–10.
  • 46. Chung WH, Hwang YT, Lee SH, Kim HS. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity. Nanotechnology [Internet]. 2016; 27(20): 1–13. Available from: http://dx.doi.org/10.1088/0957-4484/27/20/205704
  • 47. Bazan P, Mazur KE, Rybicka K, Kuciel S. The influence of organic and inorganic antibacterial additives on the strength and biocidal properties of thermoplastic elastomers ( TPO ). Ind. Crop. Prod. 2023; 198, (March): 116682.
  • 48. Zhang Y, Zhu P, Li G, Zhao T, Fu X, Sun R, Zhou F, Wong C-P. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl Mater Interfaces. 2014; 6(1): 560–7.
  • 49. Fu Q, Li W, Kruis FE. Highly conductive copper films prepared by multilayer sintering of nanoparticles synthesized via arc discharge. Nanotechnology [Internet]. 2023; 34(22): 225601. Available from; http://dx.doi.org/10.1088/1361-6528/acbd1f.
  • 50. Cuya Huaman JL, Sato K, Kurita S, Matsumoto T, Jeyadevan B. Copper nanoparticles synthesized by hydroxyl ion assisted alcohol reduction for conducting ink. J Mater Chem. 2011; 21(20): 7062–9.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8695aafb-f9eb-4014-a76d-0fe67d6d783e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.