Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 25, nr 1 | 1--11
Tytuł artykułu

Two-step collocation methods for two-dimensional Volterra integral equations of the second kind

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we develop two-step collocation (2-SC) methods to solve two-dimensional nonlinear Volterra integral equations (2D-NVIEs) of the second kind. Here we convert a 2D-NVIE of the second kind to a one-dimensional case, and then we solve the resulting equation numerically by two-step collocation methods. We also study the convergence and stability analysis of the method. At the end, the accuracy and efficiency of the method is verified by solving two test equations which are stiff. In examples, we use the well-known differential transform method to obtain starting values.
Wydawca

Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
Bibliografia
  • [1] N. Bildik and S. Deniz, A new efficient method for solving delay differential equations and a comparison with other methods, Europ. Phys. J. Plus. 132 (2017), no. 1, 51-61.
  • [2] H. Brunner and J.-P. Kauthen, The numerical solution of two-dimensional Volterra integral equations by collocation and iterated collocation, IMA J. Numer. Anal. 9 (1989), no. 1, 47-59.
  • [3] N. L. Carothers, A Short Course on Banach Space Theory, London Math. Soc. Stud. Texts 64, Cambridge University Press, Cambridge, 2005.
  • [4] D. Conte, Z. Jackiewicz and B. Paternoster, Two-step almost collocation methods for Volterra integral equations, Appl. Math. Comput. 204 (2008), no. 2, 839-853.
  • [5] D. Conte and B. Paternoster, Multistep collocation methods for Volterra integral equations, Appl. Numer. Math. 59 (2009), no. 8, 1721-1736.
  • [6] D. Conte and I. D. Prete, Fast collocation methods for Volterra integral equations of convolution type, J. Comput. Appl. Math. 196 (2006), no. 2, 652-663.
  • [7] L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.
  • [8] S. Deniz, Comparison of solutions of systems of delay differential equations using Taylor collocation method, Lambert W function and variational iteration method, Sci. Iranica. Trans. D Comp. Sci. Engin. Elec. 22 (2015), no. 3, 1052-1058.
  • [9] S. Deniz and N. Bildik, A new analytical technique for solving Lane-Emden type equations arising in astrophysics, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 2, 305-320.
  • [10] H. Guoqiang and Z. Liqing, Asymptotic error expansion of two-dimensional Volterra integral equation by iterated collocation, Appl. Math. Comput. 61 (1994), no. 2-3, 269-285.
  • [11] G. Han and R. Wang, The extrapolation method for two-dimensional Volterra integral equations based on the asymptotic expansion of iterated Galerkin solutions, J. Integral Equations Appl. 13 (2001), no. 1, 15-34.
  • [12] R. Katani and S. Shahmorad, A new block by block method for solving two-dimensional linear and nonlinear Volterra integral equations of the first and second kinds, Bull. Iranian Math. Soc. 39 (2013), no. 4, 707-724.
  • [13] F. Mirzaee and Z. Rafei, The block by block method for the numerical solution of the nonlinear two-dimensional Volterra integral equations, J. King Saud Uni. Sci. 23 (2011), no. 2, 191-195.
  • [14] Z. M. Odibat, Differential transform method for solving Volterra integral equation with separable kernels, Math. Comput. Modelling 48 (2008), no. 7-8, 1144-1149.
  • [15] J. Saberi, O. Navid Samadi and E. Tohidi, Numerical solution of two-dimensional Volterra integral equations by spectra Galerkin method, J. Appl. Math. Bioinf. 1 (2011), 159-174.
  • [16] L. Tao and H. Yong, A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind, J. Math. Anal. Appl. 282 (2003), no. 1, 56-62.
  • [17] A. Tari, M. Y. Rahimi, S. Shahmorad and F. Talati, Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method, J. Comput. Appl. Math. 228 (2009), no. 1, 70-76.
  • [18] P. J. van der Houwen and H. J. J. te Riele, Backward differentiation type formulas for Volterra integral equations of the second kind, Numer. Math. 37 (1981), no. 2, 205-217.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5afbd848-2797-4019-a3ae-caac2a168c44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.