Czasopismo
2014
|
Vol. 34, Fasc. 1
|
61--79
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We study the extremal behaviour of spatial moving averages and moving maxima on a regular discrete grid. Our main assumption is that these random fields are stationary and regularly varying with the tail index α > 0. Using the asymptotic theory for point processes we characterise the limiting behaviour of their extremes over an increasing grid. Our approach builds on the results of Davis and Resnick concerning linear processes. By analogy to the analysis of time series data, an appropriate Hill estimator of the tail index can be defined.We exhibit a sufficient condition for the consistency of this estimator in a certain class of spatial lattice models. Finally, we show that this condition holds for the models in our title.
Czasopismo
Rocznik
Tom
Strony
61--79
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- University of Zagreb, Department of Mathematics, Bijenička 30, 10000 Zagreb, Croatia, bbasrak@math.hr
autor
- University of Zagreb, Department of Mathematics, Bijenička 30, 10000 Zagreb, Croatia, atafro@math.hr
Bibliografia
- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
- [2] N. Bingham, C. Goldie, and J. Teugels, Regular Variation, Cambridge University Press, Cambridge 1987.
- [3] D. Cline, Infinite series of random variables with regularly varying tails, Tech. Report 83-24, Institute of Applied Mathematics and Statistics, University of British Columbia (1983).
- [4] R. A. Davis , C. Klüppelberg, and C. Steinkohl, Max-stable processes for modeling extremes observed in space and time, preprint, arXiv: 1107.4464 (2011).
- [5] R. A. Davis and S. I. Resnick, Limit theory for moving averages of random variables with regularly varying tail probabilities, Ann. Probab. 13 (1985), pp. 179-195.
- [6] A. C. Davison, S. A. Padoan, and M. Ribatet, Statistical modelling of spatial extremes, Statist. Sci. 27 (2012), pp. 161-186.
- [7] H. Ferreira and L. Pereira, How to compute the extremal index of stationary random fields, Statist. Probab. Lett. 78 (2008), pp. 1301-1304.
- [8] A. Jakubowski and N. Soja-Kukiela, Managing local dependencies in limit theorems for maxima of stationary random fields, submitted (2014).
- [9] Z. Kabluchko, M. Schlather, and L. de Haan, Stationary max-stable fields associated to negative definite functions, Ann. Probab. 37 (2009), pp. 2042-2065.
- [10] O. Kallenberg, Random Measures, Akademie-Verlag, Berlin 1983.
- [11] M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York 1983.
- [12] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York 2008.
- [13] S. I. Resnick and C. Stărică, Consistency of Hill’s estimator for dependent data, J. Appl. Probab. 32 (1995), pp. 139-167.
- [14] S. I. Resnick and C. Stărică, Tail index estimation for dependent data, Ann. Appl. Probab. 8 (1998), pp. 1156-1183.
- [15] K. F. Turkman, A note on the extremal index for space-time processes, J. Appl. Probab. 43 (2006), pp. 114-126.
- [16] K. F. Turkman, M. A. A. Turkman, and J. M. Pereira, Asymptotic models and inference for extremes of spatio-temporal data, Extremes 13 (2010), pp. 375-397.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4003e61a-086c-46c3-805e-046d2ed183a5