Warianty tytułu
Języki publikacji
Abstrakty
Metalearning is a technique, which enables us to improve classification accuracy in Data Mining. It uses several classifiers to compute final category for a test sample. The most popular metalearning methods are Bagging and Boosting. Effectiveness of these methods with the usage of decision tree (SPRINT) has been tested and presented in this paper.
Czasopismo
Rocznik
Tom
Strony
5--18
Opis fizyczny
Bibliogr. 11 poz., tab.
Twórcy
autor
- Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych
Bibliografia
- [1] Cichosz P. Systemy uczące się, Warszawa 2000, WNT.
- [2] Breiman L. Bagging Predictors, Machine Learning, 24(2), 1996, s. 123-140.
- [3] Dietterich T. G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning, 40(2), 2000, s. 139-157.
- [4] Freund Y., Shapire E. Experiments with a new boosting algorithm, 13th Conf. on Machine Learning, s. 148-156, 1996.
- [5] Han J., Kamber M. Data Mining: Concepts and Techiniques, New York 2001, Morgan Kaufman.
- [6] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2001.
- [7] http://mlearn.ics.uci.edu/MLRepository.html.
- [8] Mattison R. Data Warehousing and Data Mining for Telecommunications, 1997, Artech House Publishers.
- [9] Shafer J. C., Agrawal R., Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining, Proc. 22nd Int. Conf. Very Large Databases (VLDB), 1996, Morgan Kaufmann.
- [10] Strobl C., Boulesteix A. L., Augustin T. Unbiased split selection for classification trees based on the Gini Index, Computational Statistics & Data Analysis, Elsevier, 52(1), 2007, s. 483-501.
- [11] Witten I., Frank E. Data Mining, New York 2000, Morgan Kaufman.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-db5169d3-596c-4121-9d13-651661e595ef