Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | [Z] 78, 7-8 | 749--765
Tytuł artykułu

Niskotemperaturowa katalityczna redukcja dwutlenku węgla : elektrochemiczna konwersja do prostych związków chemicznych

Treść / Zawartość
Warianty tytułu
EN
Low-temperature catalytic reduction of carbon dioxide : electrochemical conversion to simple chemical compounds
Języki publikacji
PL
Abstrakty
EN
Electrochemical approaches are generally suitable for the low-temperature CO2- conversion to carbon-based simple organic fuels or utility chemicals. Different concepts of utilization, including nanostructuring, hybridization, admixing, preconditioning, modification or functionalization of various catalytic systems for catalytic electroreduction of CO2 are elucidated, as well as important strategies to enhance the systems’ overall activity are discussed. Significance of experimental conditions, including temperature, pressure or concentration of CO2, a choice of electrolyte, its acidity, and presence of certain cations and anions are also addressed.
Wydawca

Rocznik
Strony
749--765
Opis fizyczny
Bibliogr. 116 poz.
Twórcy
Bibliografia
  • [1] H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, J. Environ. Sci. 2008, 20, 14.
  • [2] W.J.J. Huijgen, R.N.J. Comans, Energy research Centre of the Netherlands ECN: 2003.
  • [3] G. Centi, S. Perathoner, Green Carbon Dioxide, Advances in CO2 Utilization, Wiley 2014.
  • [4] Y. Hori, in Modern Aspects of Electrochemistry, Eds.: C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Springer, New York) 2008, 42, p. 89.
  • [5] V. Balzani, A. Credi, M. Venturi, ChemSusChem, 2008, 1, 26.
  • [6] G. Centi, R.A. van Santen, Catalysis for Renewables, Wiley VCH, Weinheim 2007.
  • [7] D.L.Dubois, in Encyclopedia of Electrochemistry, Eds.: A.J. Bard, M. Stratmann, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim), 2006, p. 202
  • [8] J.K.W. Frese, in Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, Eds.: B.P. Sullivan, K. Krist, (Guard H.E., Elsevier, Amsterdam), 1993, p. 145.
  • [9] M.M. Halmann, M. Steinberg, in Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, Eds.: M.M. Halmann, M. Steinberg, (Lewis Publishers, Boca Raton, FL), 1999, p. 411.
  • [10] I. Taniguchi, in Modern Aspects of Electrochemistry, Eds.: J.M. Bockris, B.E. Conway, R.E. White, (Springer, New York), 1989, 20, p. 327.
  • [11] Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc. Faraday Trans.1, 1989, 85, 2309.
  • [12] 10. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Prossmeisl, J.K. Nørskov, Energy Environ. Sci., 2010, 3,1311.
  • [13] B. Dembinska, W. Kicinski, A. Januszewska, A. Dobrzeniecka, P.J. Kulesza, J. Electrochem. Soc., 2017, 164, H484.
  • [14] J. Durst, A. Rudnev, A. Dutta, Y. Fu, J. Herranz, V. Kaliginedi, A. Kuzume, A.A. Permyakova, Y. Paratcha, P. Broekmann, T.J. Schmidt, Chimia, 2015, 69, 769.
  • [15] A. Wadas, I.A. Rutkowska, A. Gorczynski, M. Kubicki, V. Patroniak, P.J. Kulesza, Electrocatalysis, 2014, 5, 229.
  • [16] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, Catal. Today, 2009, 148, 221.
  • [17] K.P. Kuhl, E.R. Cave, D.N. Abram T.F. Jaramillo, Energy Environ. Sci., 2012, 5, 7050.
  • [18] R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc., 2014, 136, 6978.
  • [19] A. Januszewska, R. Jurczakowski, P.J. Kulesza, Langmuir, 2014, 30, 14314.
  • [20] S. Ma, R. Luo, J.I. Gold, A.Z. Yu, B. Kim, P.J.A. Kenis, J. Mater. Chem. A, 2016, 4, 8573.
  • [21] S. Verma, X. Lu, S. Ma, R.I. Masel, P.J.A. Kenis, Phys. Chem. Chem. Phys., 2015, 18, 7075.
  • [22] L. Zhang, Z.-J. Zhao, J. Gong, Angew. Chem. Int. Ed., 2017, 36, 11326.
  • [23] G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, Liming Dai, Chem. Soc. Rev., 2021, 50, 4993.
  • [24] B.P. Sullivan, K. Krist, H. Guard, Electrochemical and electrocatalytic reactions of carbon dioxide, Elsevier 2012.
  • [25] D.P. Summers, S. Leach, K.W. Frese, J. Electroanal. Chem. Interfacial Electrochem., 1986, 205, 219.
  • [26] H. Hansen, J. Varley, A. Peterson, J. k. Nørskov, J. Phys. Chem. Lett., 2013, 4, 388.
  • [27] T. Reda, C. M. Plugge, N. J. Abram, J. Hirst, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 10654.
  • [28] H.A. Hansen, J.B. Varley, A.A Peterson, J.K. Nørskov, J. Phys. Chem. Lett., 2013, 4, 388.
  • [29] P. Bumroongsakulsawat, G.H. Kelsall, Electrochim.Acta, 2014, 141, 216.
  • [30] D. Gao, J. Wang, H. Wu, X. Jiang, S. Miao, G. Wang, X. Bao, Electrochem. Commun., 2015, 55, 1.
  • [31] S. Narayanaru, J. Chinnaiah, K. L. Phani, F. Scholz, Electrochim. Acta, 2018, 264, 269.
  • [32] A. S. Varela, M. Kroschel, N. D. Leonard, W. Ju, J. Steinberg, A. Bagger, J. Rossmeisl, P. Strasser, ACS Energy Lett., 2018, 3, 812.
  • [33] N. Gupta, M. Gattrell, B. MacDougall, J. Appl. Electrochem., 2006, 36, 161.
  • [34] J. Huang, P. Li, S. Chen, J. Phys. Chem. C, 2019, 123, 17325.
  • [35] J. Huang, A. Malek, J. Zhang, M. H. Eikerling, J. Phys. Chem. C, 2016, 120, 13587.
  • [36] D. Raciti, M. Mao, J.H. Park, C. Wang, J. Electrochem. Soc., 2018, 165, F799.
  • [37] A.S. Varela, M. Kroschel, T. Reier, P. Strasser, Catal. Today, 2016, 260, 8.
  • [38] J.T. Billy, A.C. Co, ACS Catal., 2017, 7, 8467.
  • [39] M. Ma, K. Djanashvili, W.A. Smith, Angew. Chem., Int. Ed., 2016, 55, 1.
  • [40] G. Zhao, T. Jiang, B. Han, Z. Li, J. Zhang, Z. Liu, J. He, W. Wu, J. Supercrit. Fluids, 2004, 32, 287.
  • [41] L. Zhang, D. Niu, K. Zhang, G. Zhang, Y. Luo, J. Lu, Green Chem., 2008, 10, 202.
  • [42] N.V. Rees, R.G. Compton, Energy Environ. Sci., 2011, 4, 403.
  • [43] B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J. Kenis, R.I. Masel, Science, 2011, 334, 643.
  • [44] J.L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc., 2013, 135, 8798.
  • [45] N. Hollingsworth, S.F.R. Taylor, M.T. Galante, J. Jacquemin, C. Longo, K.B. Holt, N.H. de Leeuw. C. Hardacre, Angew. Chem., Int. Ed., 2015, 54, 14164.
  • [46] Y. Matsubara, D.C. Grills, Y. Kuwahara, ACS Catal., 2015, 5, 6440.
  • [47] V. Vedharathinam, Z. Qi, C. Horwood, B. Bourcier, M. Stadermann, J. Biener, M. Biener, ACS Catal., 2019, 9, 10605.
  • [48] B. Braunschweig, P. Mukherjee, J.L. Haan, D.D. Dlott, J. Electroanal. Chem., 2017, 800, 144.
  • [49]. K. Wiranarongkorn, K. Eamsiri, Y.-S. Chen, A. Arpornwichanop, J. CO2 Util., 2023, 71, 102477.
  • [50] A.S. Varela, W. Ju, T. Reier, P. Strasser, ACS Catal., 2016, 6, 2136.
  • [51] J. Liu, Y. Wang, H. Jiang, X. Zhou, Y. Li, C. Li, Chem. - Asian J., 2020, 15, 425.
  • [52] C. Zou, C. Xi, D. Wu, J. Mao, M. Liu, H. Liu, C. Dong, X.-W. Du, Small, 2019, 15, 1902582.
  • [53] F. Zhang, A.C. Co, Angew. Chem., Int. Ed., 2019, 59, 1674.
  • [54] J. Resasco, L.D. Chen, E. Clark, C. Tsai, C. Hahn, T.F. Jaramillo, K. Chan, A.T. Bell, J. Am. Chem. Soc., 2017, 139, 11277.
  • [55] M. R. Singh, Y. Kwon, Y. Lum, J.W. Ager, A.T. Bell, J. Am. Chem. Soc., 2016, 138, 13006.
  • [56] S. Ringe, E.L. Clark, J. Resasco, A. Walton, B. Seger, A.T. Bell, K. Chan, Energy Environ. Sci., 2019, 12, 3001.
  • [57] Y. Hori, K. Kikuchi, A. Murata, S. Suzuki, Chem. Lett., 1986, 15, 897.
  • [58] T. Mizuno, K. Ohta, A. Sasaki, T. Akai, M. Hirano, A. Kawabe, Energy Sources, 1995, 17, 503.
  • [59] R. Aydin, F. Koleli, J. Electroanal. Chem., 2002, 535, 107.
  • [60] O. Scialdone, A. Galia, G.L. Nero, F. Proietto, S. Sabatino, B. Schiavo, Electrochim. Acta, 2016, 199, 332.
  • [61] M. Ramdin, A.R.T. Morrison, M. de Groen, R. van Haperen, R. de Kler, L.J.P. van den Broeke, J.P.M. Trusler, W. de Jong, T.J.H. Vlugt, Ind. Eng. Chem. Res., 2019, 58, 1834.
  • [62] J. Li, Y. Kuang, Y. Meng, X. Tian, W. H. Hung, X. Zhang, A. Li, M. Xu, W. Zhou, C.S. Ku, C.Y. Chiang, G. Zhu, J. Guo, X. Sun, H. Dai, J. Am. Chem. Soc., 2020, 142, 7276.
  • [63] S. Nakagawa, A. Kudo, M. Azuma, T. Sakata, J. Electroanal. Chem. Interfacial Electrochem., 1991, 308, 339.
  • [64] A. Wadas, I.A. Rutkowska, M. Bartel, S. Zoladek, K. Rajeshwar, P.J. Kulesza, Russ. J. Electrochem., 2017, 53, 1194.
  • [65] F. Zhang, A.C. Co, J. Electrochem. Soc., 2020, 167, 046517.
  • [66] H. Mistry, A.S. Varela, S. Kuhl, P. Strasser, B. Roldan Cuenya, Nat. Rev. Mater., 2016, 1, 16009.
  • [67] L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal, S. Qiao, J. Wu, Z. Yin, Chem. Soc. Rev., 2019, 48, 5310.
  • [68] Y. Hori, K. Kikuchi, S. Suzuki, Chem. Lett., 1985, 4, 1695.
  • [69] R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, J. Phys.Chem. Lett., 2015, 6, 4073.
  • [70] S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld, S. Horch, B. Seger, I.E.L. Stephens, K. Chan, C. Hahn, J.K. Nørskov, T.F. Jaramillo, I. Chorkendorff, Chem. Rev., 2019, 119, 7610.
  • [71] C.W. Li, M.W. Kanan, J. Am. Chem. Soc., 2012, 134, 7231.
  • [72] A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett., 2012, 3, 251.
  • [73] Y.-J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, ACS Catal., 2014, 4, 3742.
  • [74] A.S. Varela, M. Kroschel, T. Reier, P. Strasser, Catal. Today, 2016, 260, 8.
  • [75] H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B. Roldan Cuenya, J. Am. Chem. Soc., 2014, 136, 16473.
  • [76] H. Mistry, F. Behafarid, R. Reske, A.S. Varela, P. Strasser, B. Roldan Cuenya, ACS Catal., 2015, 6, 1075.
  • [77] W. Tang, A.A. Peterson, A.S. Varela, Z.P. Jovanov, L. Bech, W.J. Durand, S. Dahl, J.K. Nørskov, I. Chorkendorff, Phys. Chem.Chem. Phys., 2012, 14, 76.
  • [78] O.A. Baturina, Q. Lu, M.A. Padila, L. Xin, W. Li, A. Serov, K. Artyushkova, P. Atanassov, F. Xu, A. Epshteyn, T. Brintlinger, M. Schuette, G.E. Collins, ACS Catal., 2014, 4, 3682.
  • [79] K. Manthiram, B.J. Beberwyck, A.P. Alivisatos, J. Am. Chem. Soc., 2014, 136, 13319.
  • [80] C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren, B.S. Yeo, Catal. Sci. Technol., 2015, 5, 161.
  • [81] F.S. Roberts, K.P. Kuhl, A. Nilsson, Angew. Chem. Int. Ed. Engl., 2015, 127, 5268.
  • [82] S. Sen, D. Liu, G.T.R. Palmore, ACS Catal., 2014, 4, 3091.
  • [83] W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2014, 136, 16132.
  • [84] Q. Lu, J. Rosen, F. Jiao, ChemCatChem, 2015, 7, 38.
  • [85] D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, ACS Catal., 2015, 5, 2814.
  • [86] D. Kim, S. Lee, J.D. Ocon, B. Jeong, J.K. Lee, J. Lee, Phys. Chem. Chem. Phys., 2015, 17, 824.
  • [87] R. Kas, R. Kortlever, A. Milbrat, M.T.M. Koper, G. Mul, J. Baltrusaitis, Phys. Chem.Chem. Phys., 2014, 16, 12194.
  • [88] A. Verdaguer-Casadevall, C.W. Li, T.P. Johansson, S.B. Scott, J.T. McKeown, M. Kumar, I.E.L. Stephens, M.W. Kanan, I. Chorkendorff, J. Am. Chem. Soc., 2015, 137, 9808.
  • [89] C.W. Li, J. Ciston, M.W. Kanan, Nature, 2014, 508, 504.
  • [90] S. Lee, J. Lee, ChemSusChem, 2015, 9, 333.
  • [91] H. Shibata, J.A. Moulijn, G. Mul, Catal. Lett., 2008, 123, 186.
  • [92] Y.-J. Zhang, A.A. Peterson, Phys. Chem. Chem. Phys., 2015, 17, 4505.
  • [93] X. Nie, G.L. Griffin, M.J. Janik, A. Asthagiri, Catal. Commun., 2014, 52, 88.
  • [94] M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, J.C. Flake, J. Electrochem. Soc., 2011, 158, E45.
  • [95] P.J. Kulesza, I.A. Rutkowska, A. Wadas, in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Ed.: K. Wandelt, (Elsevier), 2018, 5, p. 521.
  • [96] H. Ooka, M.C. Figueiredo, M.T.M. Koper, Langmuir, 2017, 33, 9307.
  • [97] E. Kecsenovity, B. Endrödi, P.S. Tóth, Y. Zou, R.A.W. Dryfe, K. Rajeshwar, C. Janáky, J. Am. Chem. Soc., 2017, 139, 6682.
  • [98] R.P.S. Chaplin, A.A. Wragg, J. Appl. Electrochem., 2003, 33, 1107.
  • [99] M. Azuma, K. Hashimoto, M. Watanabe, T. Sakata, J. Electroanal. Chem., 1990, 294, 299.
  • [100] M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc., 1990, 137, 1772.
  • [101] M. Grden, M. Lukaszewski, G. Jerkiewicz, A. Czerwinski, Electrochim. Acta, 2008, 53, 7585.
  • [102] Y.-I. Zhang, A.A. Peterson, Phys. Chem. Chem. Phys., 2015, 17, 4505.
  • [103] J.E. Huang, F. Li, A. Ozden, A. Sedighian Rasouli, F.P. García de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R.K. Miao, C.-T. Dinh, D. Sinton, E.H. Sargent, Science 2021, 372, 1074.
  • [104] Y. Qiao, W. Lai, K. Huang, T. Yu, Q. Wang, L. Gao, Z. Yang, Z. Ma, T. Sun, M. Liu, C. Lian, H. Huang, ACS Catal., 2022, 12, 2357.
  • [105] I.A. Rutkowska, A. Chmielnicka, M. Krzywiecki, P.J. Kulesza, ACS Meas. Sci. Au, 2022, 2, 553.
  • [106] I.A. Rutkowska, P.J. Kulesza, Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Wandelt, K., Ed.; Elsevier, 2018, 5, p. 207.
  • [107] P.J. Kulesza, L.R. Faulkner, J. Am. Chem. Soc., 1988, 110, 4905.
  • [108] P.J. Kulesza, L.R. Faulkner, J. Electroanal. Chem., 1988, 248, 305.
  • [109] A. Lewera, K. Miecznikowski, R. Hunger, A. Kolary-Zurowska, A. Wieckowski, P.J. Kulesza, Electrochim. Acta, 2010, 55, 7603.
  • [110] I.A. Rutkowska, A. Wadas, P.J. Kulesza, Electrochim. Acta, 2016, 210, 575.
  • [111] I.A. Rutkowska, D. Marks, C. Perruchot, M. Jouini, P.J. Kulesza, Colloids Surf., A, 2013, 439, 200.
  • [112] S. Salmaoui, F. Sediri, N. Gharbi, C. Perruchot, S. Aeiyach, I.A. Rutkowska, P.J. Kulesza, M. Jouini, Appl. Surf. Sci., 2011, 257, 8223.
  • [113] D. Szymanska, I.A. Rutkowska, L. Adamczyk, S. Zoladek, P.J. Kulesza, J. Solid State Electrochem., 2010, 14, 2049.
  • [114] B. Roldan Cuenya, Accounts Chem. Res., 2012, 46, 1682.
  • [115] F. Zaera, Chem. Soc. Rev., 2013, 42, 2746.
  • [116] W. D. Jones, J. Am. Chem. Soc., 2020, 142, 4955.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eaf3d5e2-51f8-4cd2-a60c-b62ffea6235f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.