Czasopismo
2020
|
Vol. 172, nr 2
|
187--202
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Positron Emission Tomography image reconstruction needs a map of photon attenuation probability to provide the correct solution. This map is generally provided by an independent imaging modality. However, it might suffer for artifacts due to patient motion in sequential systems or from intrinsic limitation of the second modality (e.g.: bones that cannot be identified in MR images). It has been shown that such map can be estimated from the PET data themselves, but the solution to this problem has much worse conditioning than the tomographic problem. In this work we propose a new algorithm based on the use of multiple L1 regularization terms in the attenuation sub-problem, to incorporate prior knowledge. We also chose optimal maximizers for both sub-problems: preconditioned gradient descent for the emission one and split-Bregman for the attenuation one. The algorithm was then tested using digital phantom simulations. The proposed algorithm proved to provide accurate quantification over a large range of strength of the regularization terms. The algorithm is also able to reconstruct objects outside of the region where the problem is uniquely determined and it is able to fix the undetermined global scaling factor of joint attenuation and emission estimation. Thanks to the maximizers chosen, the algorithm is computationally less expensive than the current standard.
Czasopismo
Rocznik
Tom
Strony
187--202
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
- Nuclear Medicine Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy, presotto.luca@hsr.it
Bibliografia
- [1] Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Medical Physics, 1998. 25(10):2046-2053. doi:10.1118/1.598392.
- [2] Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2007. 48(7):1112-1121. doi:10.2967/jnumed.107.039792.
- [3] Martinez-Möller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2007. 48(2):188-193. doi:48/2/188[pii].
- [4] Mehranian A, Zaidi H. Impact of Time-of-Flight PET on Quantification Errors in MR Imaging-Based Attenuation Correction. Journal of Nuclear Medicine, 2015. 56(4):635-641. doi:10.2967/jnumed.114.148817.
- [5] Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Physics in Medicine and Biology, 2012. 57(4):885-899. doi:10.1088/0031-9155/57/4/885.
- [6] Alessio AM, Kinahan PE, Champley KM, Caldwell JH. Attenuation-emission alignment in cardiac PET/CT based on consistency conditions. Medical Physics, 2010. 37(3):1191. doi:10.1118/1.3315368.
- [7] Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, Nuyts J. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Transactions on Medical Imaging, 2012. 31(12):2224-2233. doi:10.1109/TMI.2012.2212719.
- [8] Presotto L, Busnardo E, Perani D, Gianolli L, Gilardi MC, Bettinardi V. Simultaneous reconstruction of attenuation and activity in cardiac PET can remove CT misalignment artifacts. Journal of Nuclear Cardiology, 2015. doi:10.1007/s12350-015-0239-8.
- [9] Nuyts J, Rezaei A, Defrise M. The Validation Problem of Joint Emission/Transmission Reconstruction From TOF-PET Projections. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018. 2(4):273-278. doi:10.1109/TRPMS.2018.2821798.
- [10] Delso G, Nuyts J. PET/MRI: Attenuation Correction. In: PET/MRI in Oncology, pp. 53-75. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-68517-5_4.
- [11] Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG. Tissue Classification as a Potential Approach for Attenuation Correction in Whole-Body PET/MRI: Evaluation with PET/CT Data. Journal of Nuclear Medicine, 2009. 50(4):520-526. doi:10.2967/jnumed.108.054726.
- [12] Alessio AM, Kinahan PE, Cheng PM, Vesselle H, Karp JS. PET/CT scanner instrumentation, challenges, and solutions. Radiologic Clinics of North America, 2004. 42(6):1017-1032. doi:10.1016/j.rcl.2004.08.001.
- [13] Goldstein T, Osher S. The Split Bregman Method for L1-Regularized Problems. SIAM Journal on Imaging Sciences, 2009. 2(2):323-343. doi:10.1137/080725891.
- [14] Nuyts J, Beque D, Dupont P, Mortelmans L. A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography. IEEE Transactions on Nuclear Science, 2002. 49(1):56-60. doi:10.1109/TNS.2002.998681.
- [15] Fessler J, Booth S. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction. IEEE Transactions on Image Processing, 1999. 8(5):688-699. doi:10.1109/83.760336.
- [16] Shepp LA, Vardi Y. Maximum Likelihood Reconstruction for Emission Tomography. IEEE Transactions on Medical Imaging, 1982. 1(2):113-122. doi:10.1109/TMI.1982.4307558.
- [17] Nuyts J, Man BD, Dupont P, Defrise M, Suetens P, Mortelmans L. Iterative reconstruction for helical CT: a simulation study. Physics in Medicine and Biology, 1998. 43(4):729-737. doi:10.1088/0031-9155/43/4/003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu
"Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja
sportu (2020).
"Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja
sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cfe4d9d9-20bf-4de6-aadb-a3d08b1e82cc