Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | R. 92, nr 4 | 6--9
Tytuł artykułu

Monitoring TIG welding using infrared thermography – simulations and experiments

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Monitorowanie spawania z nietopliwą elektrodą wolframową w osłonie gazów obojętnych z użyciem termografii – symulacje i eksperymenty
Języki publikacji
EN
Abstrakty
EN
In the current work a 3D model has been developed to predict the thermal cycles during the Tungsten Inert Gas welding of Aluminum 2219. This paper describes the step by step procedure adopted to get the actual cooling rate during the TIG welding process both experimentally and numerically. The model was developed in the COMSOL Finite Element Package and considered a Gaussian heat distribution. The developed model then validated using the experimental data collected in field experiments on actual large propellant tanks. Temperature measurements were performed using Infrared Camera. Results show a close comparison between model and experiment.
PL
W pracy opracowano model 3D do przewidywania cykli cieplnych podczas spawania Aluminum 2219 z nietopliwą elektrodą wolframową w osłonie gazów obojętnych. Artykuł prezentuje krok po kroku przyjętą procedurę określania właściwego tempa chłodzenia (w eksperymencie jak i w modelowaniu numerycznym) podczas spawania. Model został stworzony w programie Comsol z gaussowskim rozkładem ciepła. Model numeryczny został porównany z danymi eksperymentalnymi. Pomiary temperatury wykonywano z użyciem kamery na podczerwień. Otrzymane wyniki pokazują dobrą zbieżność modelu z eksperymentem.
Wydawca

Rocznik
Strony
6--9
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Bibliografia
  • [1] D. A. Hartman, M. B. Science, and G. E. Cook, “Arc Welding Process Control,” in ASM Handbook 6A. Welding Fundamentals and Processes, vol. 6, 2011, pp. 285–295.
  • [2] S. M. Govardhan, H. C. Wikle III, S. Nagarajan, and B. a. Chin, “Real-time welding process control using infrared sensing,” Proc. 1995 Am. Control Conf. - ACC’95, vol. 3, pp. 1712–1716, 1995.
  • [3] T. G. Lim and H. S. Cho, “Estimation of weld pool sizes in GMA welding process using neural networks,” vol. 207, 1993.
  • [4] H. Fan, N. Ravala, H. Wikleiii, and B. Chin, “Low-cost infrared sensing system for monitoring the welding process in the presence of plate inclination angle,” J. Mater. Process. Technol., vol. 140, no. 1–3, pp. 668–675, 2003.
  • [5] R. S. Huang, L. M. Liu, and G. Song, “Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process,” Mater. Sci. Eng. A, vol. 447, no. 1–2, pp. 239–243, 2007.
  • [6] N. M. Nandhitha, N. Manoharan, B. S. Rani, B. Venkataraman, P. K. Sundaram, and B. Raj, “Automatic Detection and Quantification of Incomplete Penetration in TIG Welding Through Segmentation and Morphological Image Processing of Thermographs,” Proc. Natl. Semin. Non- Destructive Eval. Dec. 7 - 9, 2006, Hyderabad, pp. 17–22, 2006.
  • [7] U. Sreedhar, C. V. Krishnamurthy, K. Balasubramaniam, V. D. Raghupathy, and S. Ravisankar, “Automatic defect identification using thermal image analysis for online weld quality monitoring,” J. Mater. Process. Technol., vol. 212, no. 7, pp. 1557–1566, 2012.
  • [8] M. A. Wahab, M. J. Painter, and M. H. Davies, “The prediction of the temperature distribution and weld pool geometry in the gas metal arc welding process,” J. Mater. Process. Technol., vol. 77, no. 1–3, pp. 233–239, 1998.
  • [9] a. Mahrle, J. Schmidt, and D. Weiss, “Simulation of temperature fields in arc and beam welding,” Heat Mass Transf., vol. 36, no. 2, pp. 117–126, 2000.
  • [10] F. Lu, X. Tang, H. Yu, and S. Yao, “Numerical simulation on interaction between TIG welding arc and weld pool,” Comput. Mater. Sci., vol. 35, no. 4, pp. 458–465, 2006.
  • [11] M. Carin and E. Favre, “Numerical simulation of fluid flow during arc welding.,” Comsol Conference, 2005.
  • [12] F. Lu, “Modeling and finite element analysis on GTAW arc and weld pool,” Comput. Mater. Sci., vol. 29, pp. 371–378, 2004.
  • [13] S. Kou and Y. Le, “Heat Flow during the Autogenous GTA Welding of Pipes,” Metall. Trans. A, vol. 15, no. 6, pp. 1165–1171, 1984.
  • [14] E. a Bonifaz, “Finite Element Analysis of Heat Flow in Single- Pass Arc Welds,” Weld. J., pp. 121–125, 2000.
  • [15] C. L. Tsai and U. S. Design, “Heat Flow in Fusion Welding *,” in ASM Handbook 6A. Welding Fundamentals and Processes, vol. 6, 2011, pp. 55–66.
  • [16] J. Goldak, A. Chakravarti, and M. Bibby, “A New Finite Element Model for Welding Heat Sources,” vol. 15, no. June, pp. 299–305, 1984.
  • [17] U. Sreedhar, C. V Krishnamurthy, and K. Balasubramaniam, “Non-Destructive Evaluation Modeling and Simulation for Temperature Prediction in Welding Using Infrared Thermography,” no. August 2015, pp. 396–400, 2009.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2e8d1f8d-d8dc-4359-8d5e-04efe2b25ed2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.