Czasopismo
2015
|
Vol. 63, iss. 1
|
35--54
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This article is the second part of a series about two-scale modelling of reactive powder concrete (RPC). In the first part [2] a method of modelling RPC microstructure was presented, the boundary value problem of mechanics for a representative cell at the micro scale was formulated and solved. In this part we will consider a method for determining material parameters at the macro level, and describe a technique of enforcement of boundary conditions upon an RVE as well as illustrate the theoretical considerations with results of numerical simulations. In the third part of the series we will present the validation of the proposed numerical model, based on the computational simulations of full size beams made of two RPC mixtures and own laboratory testing of the beams.
Czasopismo
Rocznik
Tom
Strony
35--54
Opis fizyczny
Bibliogr. 13 poz., tab., wykr.
Twórcy
autor
- University of Zielona Góra Division of Structural Mechanics Prof. Z. Szafrana 1, 65-246 Zielona Góra, Poland, a.denisiewicz@ib.uz.zgora.pl
autor
- Poznan University of Technology Institute of Structural Engineering Piotrowo 5, 61-965 Poznań, Poland, mieczyslaw.kuczma@put.poznan.pl
Bibliografia
- 1. Ainsworth M., Essential boundary conditions and multi-point constraints in finite element analysis, Computer Methods in Applied Mechanics and Engineering, 190, 6323–6339, 2001.
- 2. Denisiewicz A., Modelowanie dwuskalowe związków konstytutywnych betonu z proszków reaktywnych i ich walidacja doświadczalna [in Polish], PhD thesis, Supervisor prof. M. Kuczma, University of Zielona Góra, 2013.
- 3. Denisiewicz A., Kuczma M., Two-scale modelling of reactive powder concrete. Part I: representative volume element and solution of the corresponding boundary value problem, Civil and Environmental Engineering Reports, 10, 41–61, 2013.
- 4. Feyel F., A multilevel finite element method FE2 to describe the response of highly nonlinear structures using generalized continua, Computer Methods in Applied Mechanics and Engineering, 192, 3233–3244, 2003.
- 5. Feyel F., Multiscale FE2 elastoviscoplastic analysis of composite structures, Computational Materials Science, 16, 344–354, 1999.
- 6. Ghosh S., Lee K., Moorthy S., Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model, Computer Methods in Applied Mechanics and Engineering, 132, 63–116, 1996.
- 7. Kaczmarczyk Ł., Numeryczna analiza wybranych problemów mechaniki ośrodków niejednorodnych [in Polish], PhD thesis, Cracow University of Technology, 2006.
- 8. Kaczmarczyk Ł., Parce Ch. J., Bićanić N., Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization, Int. J. Numer. Meth. Engng., 74, 506–522, 2008.
- 9. Kouznetsova V.G., Computational homogenization for the multi-scale analysis of multiphase materials, Technishe Universitiet, Eindhoven, 2002.
- 10. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Computer Methods in Applied Mechanics and Engineering, 193, 5525–5550, 2004.
- 11. Kuczma M., Podstawy mechaniki konstrukcji z pamięcią kształtu. Modelowanie i numeryka [in Polish], Publishing house University of Zielona Gora, 2010.
- 12. Miehe C., Computational micro-to-macro transitions for discretized microstructures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy, Computer Methods in Applied Mechanics and Engineering, 192, 559–591, 2003.
- 13. Van Der Vorst H.A., Linear Algebraic Solvers and Eigenvalue Analysis, [in:] Encyclopedia of Computational Mechanics, vol. 1: Fundamentals, E. Stein, R.D. Borst, T.J.R. Hughes [Eds.], J. Wiley and Sons, Chichester, 551–576, 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7f1d37d3-1e69-4c22-a3f4-d38ff0b632c4