Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 46, no. 3 | 3--21
Tytuł artykułu

Per- and polyfl uoroalkyl substances: problematic emerging pollutants of aquatic environment

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Per- and polyfluoroalkyl substances (PFASs) are human-invented chemicals that were created in the middle of the 20th century. They were synthesized for the first time in 1949, and because of their exceptional surfactant properties, they have been widely used in many industrial applications and daily life products. The common use of PFASs resulted in their worldwide dissemination in natural environment. PFASs are reported to be ubiquitous in surface and drinking waters, but also may be present in soils, animals, milk and milk-products, plants, food. Contaminated drinking water and food are the most significant exposure sources to these chemicals. Ingested PFASs are bio-accumulative and have adverse effect on health of humans as well as animal organisms. This paper reviews the most significant information on the origin, properties, distribution, environmental fate, human exposure, health effects, and the environmental regulations on PFASs and summarizes the latest advances in the development of novel methods for the effective removal of these chemicals from the aqueous environment. Recognized (reverse osmosis, adsorption on activated carbon) and most promising developing removal methods such as adsorption on biomaterials (plant proteins, chitosan beds), mineral adsorbents (LDHs, hydrotalcite), ionexchange resins, and photocatalytic degradation have been emphasized.
Wydawca

Rocznik
Strony
3--21
Opis fizyczny
Bibliogr. 145 poz., rys., tab., wykr.
Twórcy
  • Department of Environmental Engineering, Kyoto University, Kyoto, Japan
  • Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto, Japan
Bibliografia
  • 1. Abraham. S., Rajamanickam, D.1 & Srinivasan, B. (2018). Preparation, Characterization and Cross-linking of Chitosan by Microwave Assisted Synthesis, Science International, 6, pp. 18-30.
  • 2. Ahmad, M. (2012). Innovative oxidation pathways for the treatment of traditional and emerging contaminants, Washington State University, Department of Civil and Environmental Engineering, Ph.D. Thesis.
  • 3. Ahrens, L., Taniyasu, S., Yeung, L.W.Y., Yamashita, N., Lam, P.K.S. & Ebinghaus, R. (2010). Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan, Chemosphere, 79, pp. 266-272.
  • 4. Appleman, T.D., Higgins, C.P., Quinones, O., Vanderford, B.J., Kolstad, C., Zeigler-Holady, J.C. & Dickenson, E.R.V. (2014). Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Research, 51, pp. 246-255.
  • 5. Arvaniti, O.S., Andersen, H.R., Thomaidis, N.S. & Stasinakis, A.S. (2014). Sorption of perfluorinated compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment. Chemosphere, 11, pp. 405-411.
  • 6. Arvaniti, O.S., Hwang, Y, Andersen, H.R., Stasinakis, A.S., Thomaidis, N.S. & Aloupi, M. (2015). Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron, Chemical Engineering Journal, 262, pp. 133-139.
  • 7. ASDWA (Association of State Drinking Water Administrators) (2019). Per- and polyfluoroalkyl substances (PFAS), State Drinking Water Challenges, (https://www.asdwa.org/pfas/ (Accessed 12 January 2020)).
  • 8. Australia Government, Department of Health (2020). Health based guidance for per- and polyfluoroalkyl substances (PFAS), (https://wwwhealth.gov.au (Accessed 19 September 2020)).
  • 9. Averina, M., Brox, J., Huber, S., Furberg, A.-S. & S0rensen, M. (2019). Serum perfluoroalkyl substances (PFAS) and risk of asthma and various allergies in adolescents. The Troms0 study for futures in Northern Norway, Environmental Research, 169, pp. 114-121.
  • 10. Badroddoza, A.Z.M., Bhuttarai, B. & Suri, R.P.S. (2017). Environmentally friendly ß-cyclodextrin - ionic liquid polyurethane-modified magnetic sorbent for the removal of PFOA, PFOS, and Cr(VI) from water, Sustainable Chemistry & Engineering, 5, pp. 9223-9232.
  • 11. Bao, Y., Niu, J., Xu, Z., Gao, D., Shi, J., Sun, X. & Huang, Q. (2014). Removal of perfluorooctane sufonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanism and influencing factors, Journal of Colloid and Interface Science, 434, pp. 59-64.
  • 12. Baudequin, C., Couallier, E., Rakib, M., Deguerry, I., Severac, R. & Pabon, M. (2011). Purification of firefighting water containing a fluorinated surfactant by reverse osmosis coupled to electrocoagulation-filtration, Sep. Purif. Technol., 76, pp. 275-282.
  • 13. Beskoski, V.P., Yamamoto, A., Nakano, T., Yamamoto, K., Matsumura, C., Motegi, M., Beskoski, L.S. & Inui, H., Defluorination of perfluoroalkyl acids is followed by production of monofluorinated fatty acids, Science of the Total Environment, 636, pp. 355-359.
  • 14. Boiteux, V, Dauchy, X., Bach, C., Colin, A., Hemard, J., Sagres,V, Rosin, C. & Munoz, J.-F. (2017). Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from major production sources, Science of the Total Environment, 583, pp. 393-400.
  • 15. Boone, J.S., Vigo, C., Boone, T., Byrne, C., Ferrario, J., Benson, R., Donohue, J., Simmons, J.E., Kolpin, D.W., Furlong, E.T. & Glassmeyer, S.T. (2019). Per-and polyfluoroalkyl substances in sources and treated drinking waters of the United States. Science of the Total Environment, 653, pp. 359-369.
  • 16. Brett, D., Turner, B.D., Scott, W. Sloan, S.W., Glenn, R. & Currell, G.R. (2019). Novel remediation of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater using Cannabis Sativa L. (hemp) protein powder, Chemopshere, 229, pp. 22-31.
  • 17. Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Vooght, P., Jensen, A.A., Kannan, K., Mabury, S.A. & van Leeuven, S.P.J. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins, Integrated Environmental Assessment and Management, 7(4), pp. 513-541.
  • 18. Burton, T.A. & Sedlak, D.L. (2018). Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation, Chemosphere, 206, pp. 457-464.
  • 19. Carter, K.E. & Farrell, J. (2008). Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond fil electrodes, Environmental Science and Technology, 42, pp. 6111-6155.
  • 20. Castiglioni, S., Valsecchi, S., Polesello, S., Rusconi, M., Melis, M., Palmiotto, M., Manenti, A., Davoli, E. & Zuccato, E. (2015). Sources and fate of perfluorinated compounds in the aqueous environments and in drinking water of a highly urbanized and industrialized area of Italy, Journal of Hazardous Materials, 282, pp. 51-60.
  • 21. Chen, X., Xia, X., Wang, X., Qiao, J. & Chen, H. (2011). A comparative study on sorption of perfluorooctane silfonate (PFOS) by chars, ash and carbon nanotubes, Chemosphere, 83, pp. 1313-1319.
  • 22. Ciu, Q., Pan, Y., Zhang, H., Sheng, N. & Dai, J. (2018). Elevated concentrations of perfluorohexanesilfoante and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): source characterization and exposure assessment, Environmental Pollution, 241, pp. 684-691.
  • 23. Coakley, J., Bridgen, P., Mueller, J., Douwes, J. & Mannetje, A. (2018). Polybrominated biphenyl ethers and perfluorinated alkyl substances in blood serum of New Zealand adults, 2011-2013, Chemosphere, 208, pp. 382-389.
  • 24. Dalahmeh, S., Tirgani, S., Komakech, A.J., Niwagaba, C.B. & Ahrens, L. (2018). Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda, Science of the Total Environment, 631-632, pp. 660-667.
  • 25. Deng, S., Nie, Y, Du, Z., Huang, Q., Meng, P., Wang, B., Huang, J. & Yu, G. (2015). Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon, Journal of Hazardous Materials, 282, pp. 150-157.
  • 26. Deng, S., Zhang, Q., Nie, Y, Wei, H., Wang, B., Huang, J., Yu, G. & Xing, B. (2012). Sorption mechanism of perfluorinated compounds on carbon nanotubes, Environmental Pollution, 168, pp. 138-144.
  • 27. D’Hollander, W., Herzke, D., Huber, S., Hajslova, J., Pulkrabova, J., Brambilla, G., De Filippis, S.P., Bervoets, L. & de Voogt, P. (2015). Occurrence of perfluorinated alkalyted substances in cereals, salt, sweets and fruit items collected in four European countries, Chemosphere, 129, pp. 179-185.
  • 28. Du, Z., Deng, S., Bei, Y, Huang, Q., Wang, B., Huang, J. & Yu, G. (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents - a review, Journal of Hazardous Materials, 274, pp. 443-454.
  • 29. Du, Z., Deng, S., Chen, Y, Wang, B., Huang, J., Wang, Y. & Yu, G. (2015). Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbon and resins, Journal of Hazardous Materials, 286, pp. 136-143.
  • 30. Du, Z., Deng, S., Zhang, S., Wang, W., Wang, B., Huang, J., Wang, Y., Yu, G. & Xing, B. (2017). Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculate, Environmental Science & Technology, 51, pp. 8027-8035.
  • 31. EPA (Environmental Protection Agency), Ministry of the Environment and Food of Denmark (2015). Perfluoroalkylated substances: PFOA, PFOS and PFOSA, Environmental project No. 1665, 2015. (https://mst.dk/service/publikationer/publikationsarkiv/2015/apr/perfluoro-alkylated-substances-pfoa-pfos-and-pfosa/ (Accessed 12 January 2020)).
  • 32. Eschauzier, C., Beerendonk, E., Scholte-Veenendaal, P. & de Voogt, P. (2012). Impact of treatment process on the removal of perfluoroalkyl acids from drinking water production chain, Environmental Science & Technology, 46, pp. 1708-1715.
  • 33. Eschauzier, C., Raat, K.J., Stuyfzand, P.J &, de Voogt, P. (2013). Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility, Science of the Total Environment, 458-460, pp. 477-485.
  • 34. Espana, V.A.A., Mallavarapu, M. & Naidu, R. (2015). Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): a critical review with an emphasis on field testing, Environmental Technology & Innovation, 4, pp. 168-181.
  • 35. EU (European Commission) (2017). Directive of the European Parliament and of the Council on the quality of water intended for human consumption (recast). COM/2017/0753 final-2017/0332(COD). (https://eurlex.europa.eu/legalcontent/EN/TXT/?qid=1519210589057&uri=CELEX:52017PC0753, (Accessed 12 January 2020)).
  • 36. Fang, C., Sobhani, Z., Niu, J. & Naidu, R. (2019). Removal of PFAS from aqueous solution using PbO2 from lead-acid battery, Chemosphere, 219, pp. 36-44.
  • 37. Gallen, C., Baduel, C., Lai, F.Y, Thompson, K., Thompson, J., Warne, M. & Mueller, J.F. (2014). Spatio-temporal assessment of perfluorinated compounds in the Brisbane river system, Australia: impact of a major flood event, Marine Pollution Bulletin, 85, pp. 597-605.
  • 38. Gallen, C., Eaglesham, G., Drage, D., Hue Nguyen, T. & Mueller, J.F. (2018). A mass estimate of perfluoroalkyl substances (PFAS) release from Australian wastewater treatment plants, Chemosphere, 208, 975-983.
  • 39. Gao, Y, Deng, S., Du, Z., Liu, K. & Yu, G. (2017). Adsorptive removal of emerging polyfluoroalkyl substances F-53B and PFOS b anion-exchange resin: a comparative study, Journal of Hazardous Materials, 323, pp. 550-557.
  • 40. Ghisi, R., Vamerali, T. & Manzetti, S. (2019). Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review, Environmental Research, 169, pp. 326-341.
  • 41. Giri, R.R., Ozaki, H., Okada, T., Taniguchi, S. & Takanami, T. (2012). Factors influencing UV photodecomposition of perfluorooctanoic acid in water, Chem Eng J, 180, pp. 197-203.
  • 42. Gu, Y, Dong, W., Luo, C. & Liu, T. (2016). Efficient reductive decomposition of perfluorooctanesulfonate in a high photon flux UV/sulfite system, Environmental Science and Technology, 50, pp. 10554-10561.
  • 43. Gu, Y, Liu, T., Wang, H., Han, H. & Dong, W. (2017). Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system, Science of the Total Environment, 607-608, pp. 541-548.
  • 44. Hamid, H., Li, L.Y & Grace, J.R. (2018). Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills, Environmental Pollution, 235, pp. 74-84.
  • 45. Hang, X., Chen, X., Luo, J., Cao, W. & Wan, Y (2015). Removal and recovery of perfluorooctane from wastewater by nanofiltration, Separation and Purification Technology, 145, pp. 120-129.
  • 46. Harris, M.H., Oken, E., Rifas-Shiman, S.L., Calafat, A.M., Ye, X., Bellinger, D.C., Websters, T.F., White, R.F. & Sagiv, S.K. (2018). Prenatal and childhood exposure to per- and polyfluoroalkyl substances (PFASs) and child cognition, Environmental International, 115, pp. 358-369.
  • 47. Hepburn, E., Madden, C., Szabo, D., Coggan, T.L., Clarke, B. & Currell, M. (2019). Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct, Environmental Pollution, 248, pp. 101-113.
  • 48. Herzke, D., Huber, S., Bervoets, L., D’Hollander, W., Hajslova, J., Pulkrabova, J., Brambilla, G., De Filippis, S.P., Klenow, S. & Heinemeyer, G. (2013). Perfluorinated alkylated substances in vegetables collected in four European countries: occurrence and human exposure estimations, Environ Sci Pollut Res, 20, pp. 7930-7939.
  • 49. Higgins, C.P., Luthy, R.G. (2006). Sorption of perfluorinated surfactants on sediments, Enviro Sci & Technol, 40, pp. 7251-7256.
  • 50. Hodkins, L.M., Mulligan, R.P., McCallum, J.M. & Weber, K.P. (2019). Modelling the transport of shipborne per- and polyfluoroalkyl substances (PFAS) in the costal environment, Science of the Total Environment, 658, pp. 602-613.
  • 51. Hoisæter, A., Pfaff, A. & Breedveld, G.D. (2019). Leaching and transport of PFAS from aquesous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions, Journal of Contaminant Hydrology, 222, pp. 112-122.
  • 52. Hori, H., Nagaoka, Y, Sano, T. & Kutsuna, S. (2008). Iron-induced decomposition of perfluorohexanesulfonate in sub- and supercritical water, Chemosphere, 70, pp. 800-806.
  • 53. Hu, Z., Song, X., Wei, C. & Liu, J. (2017). Behavior and mechanism for sorptive removal of perfluorooctane sulfonate by layered double hydroxides, Chemosphere, 187, pp. 196-205.
  • 54. Huang, M., Jiao, J., Zhuang, P., Chen, X., Wang, J. & Zhang, Y (2018). Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population, Environment International, 119, pp. 37-46.
  • 55. Hurley, S., Goldberg, D., Wang, M., Park, J.-S., Petreas, M., Bernstein, L., Anton-Culver, H., Nelson, D.O. & Reynolds, P. (2018). Time trends in per- and polyfluoroalkyl substances (PFASs) in California women: declining serum levels, 2011-2015, Environmental Science & Technology, 52, pp. 277-287.
  • 56. Inyang, M. & Dickenson, E.R.V (2017). The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems, Chemosphere, 184, pp. 168-175.
  • 57. ITRC (The Interstate Technology & Regulatory Council, Per- and Polyfluoroalkyl Substances Team), Per- and Polyfluoroalkyl Substances (PFAS), April 2020 (https://pfas-1.itrcweb.org/download-full-document/), (Accessed 12 January 2020).
  • 58. Jian, J.-M., Chen, D., Guo, F.-J., Zeng, L., Lu, X. & Wang, F. (2018). A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs), Science of the Total Environment, 636, pp. 1058-1069.
  • 59. Jin, L., Zhang, P., Shao, T. & Zhao, S. (2014). Ferric mediated photodecomposition of aqueous perfluorooctane sulfonate (PFOS) under UV irradiation and its mechanism, Journal of Hazardous Materials, 271, pp. 9-15.
  • 60. Karaskova, P., Codling, G., Melymuk, L. & Klanova, L. (2018). A critical assessment of passive air samples for per- and polyfluoroalkyl substances, Atmospheric Environment, 185, pp. 186-195.
  • 61. Kerfoot, W.B. (2014). Method and apparatus for treating perfluoroalkyl compounds. US Patent US2014/0246366 A1 (https://patents.google.com/patent/US20140246366A1/en), (Accessed 12 January 2020)).
  • 62. Klenow, S., Heinemeyer, G., Brambilla, G., Dellatte, E., Herzke, D. & de Voogt, P. (2013). Dietary exposure to selected perfluoroalkyl acids (PFAAs) in four European regions, Food Addit. Contam Part A, 30, pp. 2141-2151.
  • 63. Kowalczyk, J., Ehlers, S., Oberhausen, A., Tischer, M., Furst, P., Schafft, H. & Lahrssen-Wiederholt, M. (2013). Absorption, distribution, and milk secretion of the perfluoroalkyl acids PFBS, PFHxS, PFOS, and PFOA by dairy cows fed naturally contaminated feed, J Agric Food Chem, 61, pp. 2903-2912.
  • 64. Kucharzyk, K.H., Darlington, R., Benotti, M., Deeb, R. & Hawley, E. (2017). Novel treatment technologies for PFAS compounds: a critical review, Journal of Environmental Management, 204, pp. 757-764.
  • 65. Kunacheva, C., Tanaka, S., Fuji, S., Boontanon, S.K., Musirat, C., Wongwattana, T. & Shivakoti, B.R. (2011). Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand Chemosphere, 83, pp. 737-744.
  • 66. Kupryianchuk, D., Hale, S.E., Breedveld, G.D. & Cornelissen, G. (2016). Treatment of sites contaminated with perfluoronated compounds using biochar amendment, Chemosphere, 142, pp. 35-40.
  • 67. Kwon, B.G., Lim, H.J., Na, S.H., Choi, B.I., Shin, D.S. & Chung, S.Y (2014). Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant, Chemosphere, 109, pp. 221-225.
  • 68. Lam, N.-H., Cho, C.-R., Lee, J.-S., Soh, H.-Y, Lee, B.-C., Lee, J.-A., Tatarozako, N., Sasaki, K., Saito, N., Iwabuchi, K., Kannan, K. & Cho, H.-S. (2014). Perfluorinated alkyl substances in water, sediment, plankton and fish from Korean rivers and lakes: a nationwide survey, Science of the Total Environment, 491-492, 154-162.
  • 69. Lampert, C.J., Frisch, M.A. & Speitel, G.E. (2007). Removal of perfluorooctanoic acid and perfluorooctane sulfonate from wastewater by ion exchange, Pract. Period. Hazard Toxic Radioact Waste Manage, 11, pp. 60-68.
  • 70. Lei, M., Zhang, L., Lei, J., Zong, L., Li, J., Wu, Z. & Wang, Z. (2015). Overview of emerging contaminants and associated human health effects, BioMed Research International, Article ID 404796, 12 pages. (http://dx.doi.org/10.1155/2015/404796, (Accessed 12 January 2020)).
  • 71. Lin, A.Y.C., Panchangam S.C., Chang, C.-Y, Hong, P.K.A. & Hsueh, H.-F. (2012). Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition, Journal of Hazardous Materials, 243, pp. 272-277.
  • 72. Lin, H., Wang, Y, Niu, J., Yue, Z. & Huang, Q. (2015). Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation, Eniron. Sci. Technol., 49, 17, pp. 10562-10569.
  • 73. Lindstrom, A.B., Strynar, M.J. & Libelo, E.L. (2011). Polyfluorinated compounds: past, present, and future, Environmental Science & Technology, 45, pp. 7954-7961.
  • 74. Liu, D., Xiu, Z., Liu, F., Wu, G., Adamson, D., Newell, Ch., Viekesland, P., Tsai, A.-L. & Alvarez, P.J. (2013a). Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight, Journal of Hazardous Materials, 262, pp. 456-463.
  • 75. Liu, J. & Avendano, S.M. (2013b). Microbial degradation of polyfluoroalkyl chemicals in the environment: a review, Environment International, 61, pp. 98-114.
  • 76. Liu, T., Gu, Y, Xing, D.Y, Dong, W. & Wu, X. (2018). Rapid and high-capacity adsorption of PFOS and PFOA by regenerable ammoniated magnetic particle, Environmental Science and Pollution Research, 25, pp. 13813-13822.
  • 77. Llorca, M., Farre, M., Sanchez-Melsio, A., Villagrasa, M., Knepper,T.P. & Barcelo, D. (2018). Perfluoroalkyl phosphonic acids adsorption behavior and removal by wastewater organisms, Science of the Total Environment, 636, pp. 273-281.
  • 78. Lutze, H.V, Brekenfeld, J., Naumov, S., von Sonntag, C. & Schmidt, T.C. (2018). Degradation of perfluorinated compounds by sulfate radicals - new mechanistic aspects and economical considerations, Water Research, 129, pp. 509-519.
  • 79. MacInnis, J.J., Lehnherr, I., Muir, D.C.G., Quinlan, R. & De Silva, A.O. (2019). Characterization of perfluoroalkyl substances in sediments cores from High and Low Arctic lakes in Canada, Science of the Total Environment, 666, pp. 414-422.
  • 80. Madhura, L., Kanchi, S., Sabela, M.I., Singh, S., Bisetty, K. & Inamuddin, (2018). Membrane technology for water purification, Environmental Chemistry Letters, 16, pp. 343-365.
  • 81. Meng, P., Deng, S., Lu, X., Du, Z., Wang, B., Huang, J., Wang, Y, Yu, G. & Xing, B. (2014). Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents, Environmental Science & Technology, 48, pp. 13785-13792.
  • 82. Milinovic, J., Lacorte, S., Vidal, M. & Rigol, A. (2015). Sorption behavior of perfluoroalkyl substances in soils, Science of the Total Environment, 511, pp. 63-71.
  • 83. Milley, S.A., Koch, I., Fortin, P., Archer, J., Reynolds, D. & Weber, K.P. (2018). Estimating the number of airports potentially contaminated with perfluoroalkyl and polyfluoroalkyl substances from aqueous film forming foam: a Canadian example, Journal of Environmental Management, 222, pp. 122-131.
  • 84. Mitchell, S.M., Ahmad, M., Teel, A.L. & Watts, R.J. (2013). Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions, Environmental Science & Technology Letters, 1, pp. 117-121.
  • 85. Moriwaki, H., Takagi, Y, Tanaka, M., Tsuruho, K., Okitsu, K. & Maeda, Y. (2005). Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid, Environmental Science & Technology, 39, pp. 3388-3392.
  • 86. Murray, C.C., Vatankhah, H., McDonough, C.A., Nickerson, A., Hedtke, T.T., Cath, T.Y. & Higgins, C.P., Bellona, C.L. (2019). Removal of per- and polyfluoroalkyl substances using super- -fine powder activated carbon and ceramic membrane filtration, Journal of Hazardous Materials, 366, pp.160-168.
  • 87. Mussabek, D., Ahrens, L., Persson, K.M. & Berndtsson, R. (2019). Temporal trends and sediment-water partitioning of per- and polufluorolakyl substances (PFAS) in lake sediment, Chemopshere, 227, 624-629.
  • 88. Ochiai, T., Iizuke, Y., Nakata, T., Murakami, T., Tryk, D.A., Fujishima, A., Koide, Y. & Morito, Y. (2011). Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode, Diamond Related Mater., 20(2), pp. 64-67.
  • 89. Ochoa-Herrere, V. & Sierra-Alvarez, R. (2008). Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge, Chemosphere, 72, pp. 1588-1593.
  • 90. Omorodion, H., Palenzuela, M., Ruether, M., Twamley, B., Platts, J.A. & Baker, R.J. (2018). A rationally designed perfluorinated host for the extraction of PFOA for water utilizing non-covalent interactions, New J. Chem., 42, pp. 7956-7968.
  • 91. Palmer, K., Bangma, J.T., Reiner, J.L., Bonde, R.K., Korte, J.E., Boggs, A.S.P. & Bowden, J.A. (2019). Per- and polyfluoroalkyl substances (PFAS) in plasma of the West Indian manatee (Trichechus manatus), Marine Pollution Bulletin, 140, pp. 610-615.
  • 92. Paul, A.G., Jones, K.C. & Sweetman, A.J. (2009). A first global production, emission, and environmental inventory for perfluorooctane sulfonate, Environ. Sci. Technol., 43, pp. 386-392.
  • 93. Pereira, H.C., Ullberg, M., Kleja, D.B., Gustafsson, J.P. & Ahrens, L. (2018). Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon - effect of cation composition and pH, Chemosphere, 207, pp. 183-191.
  • 94. Post, G.B., Cohn, P.D. & Cooper, K.R. (2012). Perfluorooctanoic acid (PFOA), and emerging drinking water contaminant: a critical review of recent literature, Environmental Research, 116, pp. 93-117.
  • 95. Post, G.B., Gleason, J.A. & Cooper, K.R. (2017). Key scientific issues in developing drinking water guidelines for perfluoroalkyl acids: contaminants of emerging concerns, PLOS Biology, (https:// doi.org/10.1371/journal.pbio.2002855, (Accessed 12 January 2020)).
  • 96. Qian, J., Shen, M., Wang, P., Wang, C., Hou, J., Ao, Y., Liu, J. & Li, K. (2017). Adsorption of perfluorooctane sulfonate on soils: effects of soil characteristics and phosphate competition, Chemosphere, 168, pp. 1383-1388.
  • 97. Rattanaoudom, R., Visvanathan, Ch. & Boontanon, S.K. (2012). Removal of Concentrated PFOS and PFOA in Synthetic Industrial Wastewater by Powder Activated Carbon and Hydrotalcite, J. Water Sustain., 2, pp. 245-258.
  • 98. Rodriguez-Freire, L., Balachandran, R., Sierra-Alvarez, R. & Keswani, M. (2015). Effect of sound frequency and initial concentration of the sonochemical degradation of perfluorooctane sulfonate (PFOS), Journal of Hazardous Materials, 300, pp. 662-669.
  • 99. Schaefer, C.E., Andaya, C., Urtiaga, A., McKenzie, E.R. & Higgins, C.P. (2015). Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs), Journal of Hazardous Materials, 295, pp. 170-175.
  • 100. Senavirathna, S.T.M.L.D., Tanaka, S., Fuji, S., Kunacheva, C., Harada, H., Ariyadasa, B.H.A.K.T. & Shivakoti, B.R. (2010a). Adsorption of perfluorooctane sulfonate (n-PFOS) onto non ionic-exchange polymers and granular activated carbon: batch and column test, Desalination, 260, pp. 29-33.
  • 101. Senavirathna, S.T.M.L.D., Tanaka, S., Fuji, S., Kunacheva, C., Harada, H., Shivakoti, B.R. & Okamoto, R. (2010b). A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon ion-exchange polymers and non-ion-exchange polymers, Chemosphere, 80, pp. 647-651.
  • 102. Sophia, A.C. & Lima, E.C. (2018). Removal of emerging contaminants from the environment by adsorption, Ecotoxicology and Environmental Safety, 150, pp. 1-17.
  • 103. Sorengard, M., Kleja, D.B. & Ahrens, L. (2019). Stabilization and solidification remediation of soil contaminated with poly-and perfluoroalkyl substances (PFASs), Journal of Hazardous Materials, 367, pp. 639-646.
  • 104. Szabo, J., Hall, J., Magnusson, M., Panguluri, S. & Meiners, G. (2017). Treatment of perfluorinated alkyl substances in wash water using granular activated carbon and mixed media, US EPA, EPA/600/R-17/175 June 2017. (www.epa.gov/homeland-security-research, (Accessed 12 January 2020)).
  • 105. Sznajder-Katarzynska, K., Surma, M., Wiczkowski, W. & Cieślik, E. (2019). The perfluoroalkyl substance (PFAS) contamination level in milk and milk products in Poland, International Dairy Journal., 96, pp. 73-84.
  • 106. Takagi, S., Adachi, F., Miyano, K., Koizumi, Y., Tanaka, H., Watanabe, I., Tanabe, S. & Kannan, K. (2011). Fate of perfluorooctanesulfoate and perfluorooctanoate in drinking water treatment processes, Water Research, 45, pp. 3925-3932.
  • 107. Tang, C.Y., Fu, Q.S., Criddle, C.S. & Leckie, J.O. (2007). Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater, Environ. Sci. Technol., 41, pp. 2008-2014.
  • 108. Tang, C.Y., Fu, Q.S., Gao, D., Criddle, C.S. & Leckie, J.O. (2010). Effect of solution chemistry on the adsorption of the perfluorooctane sulfonate onto mineral surfaces, Water Research, 44, 2654-2662.
  • 109. Tang, C.Y., Fu, Q.S., Robertson, A.P., Criddle, C.S. & Leckie, J.O. (2006). Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater, Environmental Science & Technology, 40, pp. 7343-7349.
  • 110. Taylor, M.D., Nilsson, S., Brauning, J., Bowles, K.C., Cole, V., Moltschaniwskyj, M.A. & Mueller, J.F. (2019). Do conventional cooking methods alter concentrations of per- and poly-fluoroalkyl substances (PFASs) in seafood? Food and Chemical Technology, 127, pp. 280-287.
  • 111. Toms, L.M.L., Braunig, J., Vijayasarathy, S., Philips, S., Hobson, P., Aylward, L.L., Kirk, M.D. & Mueller, J.F. (2019). Per- and polyfluoroalkyl substances (PFAS) in Australia: Current levels and estimated population reference for selected compounds, International Journal of Hygiene and Environmental Health, 222, pp. 387-394.
  • 112. Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I. & Kulisa, K. (2018). Advanced oxidation/reduction process treatment for aqueous perfluorooctanoate (PFOA) and perfluorosulfonate (PFOS). - a review of recent advances, Chemical Engineering Journal, 336, pp. 170-199.
  • 113. US EPA (Environmental Protection Agency of United States of America) (2018). Reducing PFAS in Drinking Water with Treatment Technologies, (https://www.epa.gov/sciencematters/ reducing-pfas-drinking-water-treatment-technologies, (Accessed 12 January 2020)).
  • 114. Vecitis, C.D., Wang, Y., Cheng, J., Park, H., Mader, B.T. & Hoffmann, M.R. (2009). Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams, Environmental Science & Technology, 44, pp. 432-438.
  • 115. Vorkamp, K., Falk, K., Meller, S., Bossi, R,. Riget, F.F. & Serensen, P.B. (2019). Perfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) add to the chemical cocktail in peregrine falcon eggs, Science of the Total Environment, 648, pp. 894-901.
  • 116. Wang, F., Liu, C. & Shih, K. (2012). Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite, Chemosphere, 89, pp. 1009-1014.
  • 117. Wang, F. & Shih, K. (2011). Adsorption of pefluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations, Water Research, 45, pp. 2925-2930.
  • 118. Wang, F., Shih, K. & Leckie, J.O. (2015). Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite, Chemosphere, 118, pp. 213-218.
  • 119. Wang, T., Wang, Y., Liao, C., Cai, Y. & Jiang, G. (2009). Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm Convention on Persistent Organic Pollutants, Environ. Sci. Technol., 43, pp. 5171-5175.
  • 120. Wang, Z., Cousins, I.T., Scheringer, M., Buck, R.C. & Hubgerbuhler, K. (2014). Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part I: production and emissions from quantifiable sources, Environ Int., 70, pp. 62-75.
  • 121. Weber, A.K., Barber, L.K., LeBlanc, D.R., Sunderland, E.M. & Vecitis, C.D. (2017). Geochemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, Cape Code, Massachusetts, Environ Sci Technology, 51, pp. 4269-4279.
  • 122. Wei, C., Song, X., Wang, Q. & Hu, Z. (2017). Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties, Ecotoxicology and Environmental Safety, 142, pp. 40-50.
  • 123. White, S.S., Fenton, S.E. & Hines, E.P. (2011). Endocrine disrupting properties of perfluorooctanoic acid, Journal of Steroid Biochemistry and Molecular Biology, 127, pp. 16-26.
  • 124. Wilhelm, M., Bergmann, S. & Dieter, H.H. (2010). Occurance of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4-C7 PFCs, International Journal of Hygiene and Environmental Health, 23, pp. 224-232.
  • 125. Woodard, S., Berry, J. & Newman, B. (2017). Ion exchange resin for PFAS removal and pilot test comparison to GAC, Remediation, 27, pp. 19-27.
  • 126. Xiao, F. (2017). Emerging poly- and perfluoryalkyl substances in the aquatic environment: a review of current literature, Water Research, 124, pp. 482-495.
  • 127. Xiao, F., Davidsavor, K.J., Park, S., Nakayama, M. & Phillips, B.R. (2012). Batch and column study: sorption of perfluorinated surfactants from water and co-solvent systems by Amberlite XAD resins, Journal of Colloid and Interface Science, 368, pp. 505-511.
  • 128. Xiao, F., Simcik, M.F., Halbach, T.R. & Gulliver, J.S. (2015). Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in souls and groundwater od a U.S. metropolitan area: migration and implications for human exposure, Water Research, 7, pp. 64-74.
  • 129. Xiao, L., Ling, Y., Alsbaiee, A., Li, C., Helbling, D.E. & Dichtel, W.R. (2017). ß-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations, Journal of the American Chemical Society, 139, pp. 7689-7692.
  • 130. Yamashita, N., Kannan, K., Taniyasu, S., Horii, Y., Petrick, G. & Gamo, T. (2005). A global survey of perfluorinated acids in oceans. Mar PollutBull, 51, pp. 658-668.
  • 131. Yang, B., Han, Y., Deng, Y., Li, Y., Zhuo, Q. & Wu, J. (2016). Highly efficient removal of perfluoroctanoic acid from aqueous solution by H2O2-enhanced electrocoagulation-electrofiltration technique, Emerging Contaminants, 2, pp. 49-55.
  • 132. Yao, Y., Chang, S., Zhao, Y., Tang, J., Sun, H. & Xie, Z. (2017). Per- and poly-fluoroalkyl substances (PFASs) in the urban, industrial, and background atmosphere of Northeastern China coast around the Bohai Sea: occurrence, partitioning, and seasonal variation, Atmospheric Environment, 167, pp. 150-158.
  • 133. Yu, J., He, C., Liu, X., Wu, J., Hu, Y. & Zhang, Y. (2014). Removal of perfluorinated compounds by membrane bioreactor with powdered activated carbon (PAC): adsorption onto sludge and PAC, Desalination, 334, pp. 23-28.
  • 134. Zareitalabad, P., Siemens, J., Hamer, M. & Amelung, W. (2013). Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soil and wastewater - a review on concentrations and distribution coefficients, Chemosphere, 91, pp. 725-732.
  • 135. Zhang, K., Huang, J., Yu, G., Zhang, Q., Deng, S. & Wang, B. (2013). Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling, Environmental Science and Technology, 47, pp. 6471-6477.
  • 136. Zhang, Q., Deng, S., Yu, G. & Huang, J. (2011). Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism, Bioresource Technology, 102, pp. 2265-2271.
  • 137. Zhang, W., Zhang, D. & Liang, Y. (2019). Nanotechnology in remediation of water contaminated by poly- and perfluorinated substances: a review, Environmental Pollution, 247, pp. 266-276.
  • 138. Zhang, R., Yan, W. & Jing, C. (2014). Mechanistic study of PFOS adsorption kaolinite and montmorillonite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, pp. 252-258.
  • 139. Zhao, C., Hu, G., Hou, D., Yu, L., Zhao, Y., Wang, J., Cao, A. & Zhai, Y. (2018). Study on the effects of cations and anions on the removal of perfluorooctane sulphonate by nanofiltration membrane, Separation and Purification Technology, 202, pp. 385-396.
  • 140. Zhao, C., Tang, C.Y, Li, P., Adrian, P. & Hu, G. (2016). Perfluorooctane sulfonate removal by nanofiltration membrane - the effect of interaction of magnesium ion / humic acid, Journal of Membrane Science, 503, pp. 31-41.
  • 141. Zheng, Y., Zhi, Y, Liu, J. & Ghoshal, S. (2018). Sorption of Perfluoroalkyl acids to fresh and aged nanoscale zerovalent iron particles, Environmental Science & Technology, 51, pp. 6300-6308.
  • 142. Zhi, Y. & Liu, J. (2015). Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: effects of carbon surface chemistry, Environmental Pollution, 202, 168-176.
  • 143. Zhi, Y & Liu, J. (2016). Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions, Chemosphere, 144, pp. 1224-1232.
  • 144. Zhou, Q., Deng, S., Zhang, Q., Fan, Q., Huang, J. & Yu, G. (2010). Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated sludge, Chemosphere, 81, pp. 453-458.
  • 145. Zhuo, Q., Deng, S., Yang, B., Huang, J., Wang, B., Zhang, T. & Yu, G. (2012). Degradation of perfluorinated compounds on a boron-doped diamond electrode, Electrochim Acta, 77, pp. 17-22.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu
"Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja
sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-40412031-3a28-4434-a590-928d0877b421
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.