Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 48, nr 4 | 475--492
Tytuł artykułu

The finite basis problem for Kiselman monoids

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Proceedings of the AAA88 - 88th Workshop on General Algebra Editors for the Special Issue: Anna Romanowska, Jonathan D. H. Smith
Języki publikacji
EN
Abstrakty
EN
In an earlier paper, the second-named author has described the identities holding in the so-called Catalan monoids. Here we extend this description to a certain family of Hecke–Kiselman monoids including the Kiselman monoids Kn. As a consequence, we conclude that the identities of Kn are nonfinitely based for every n≥4 and exhibit a finite identity basis for the identities of each of the monoids K2 and K3.
Wydawca

Rocznik
Strony
475--492
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Institute of Mathematics and Computer Science, Ural Federal University, Lenina 51, 620000 Ekaterinburg, Russia, dmitry11ksi@gmail.com
  • Institute of Mathematics and Computer Science, Ural Federal University, Lenina 51, 620000 Ekaterinburg, Russia, mikhail.volkov@usu.ru
autor
  • School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China, zhangwt@lzu.edu.cn
  • Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou, Gansu 730000, China
  • Department of Mathematics and Statistics, La Trobe University, Vic 3086, Australia
Bibliografia
  • [1] R. Aragona, A. D’Andrea, Hecke–Kiselman monoids of small cardinality, Semigroup Forum 86(1) (2013), 32–40.
  • [2] K. Auinger, I. Dolinka, T. V. Pervukhina, M. V. Volkov, Unary enhancements of inherently non-finitely based semigroups, Semigroup Forum 89(1) (2014), 41–51.
  • [3] K. Auinger, I. Dolinka, M. V. Volkov, Matrix identities involving multiplication and transposition, J. Eur. Math. Soc. (JEMS) 14(3) (2012), 937–969.
  • [4] K. Auinger, I. Dolinka, M. V. Volkov, Equational theories of semigroups with involution, J. Algebra 369 (2012), 203–225.
  • [5] Yu. A. Bahturin, A. Yu. Ol’shanskii, Identical relations in finite Lie rings, Mat. Sb. 96(4)(138) (1975), 543–559, (Russian), English translation: Mathematics of the USSR–Sbornik 25(4) (1975), 507–523.
  • [6] F. Blanchet-Sadri, Equations and dot-depth one, Semigroup Forum 47(3) (1993), 305–317.
  • [7] F. Blanchet-Sadri, Equations and monoid varieties of dot-depth one and two, Theoret. Comput. Sci. 123(2) (1994), 239–258.
  • [8] T. Denton, F. Hivert, A. Schilling, N. M. Thiéry, On the representation theory of finite J-trivial monoids, Séminaire Lotharingien de Combinatoire 64 (2011), Article B64d.
  • [9] O. Ganyushkin, V. Mazorchuk,On Kiselman quotients of 0-Hecke monoids, Int. Electron. J. Algebra 10(2) (2011), 174–191.
  • [10] R. Golovko, On some properties of Kiselman’s semigroup, in: 4th International Algebraic Conference in Ukraine, Collection of Abstracts, Lviv Ivan Franko National University, 2003, 81–82.
  • [11] P. M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Cambridge Philos. Soc. 113(2) (1993), 281–296.
  • [12] M. Jackson, R. McKenzie, Interpreting graph colorability in finite semigroups, Internat. J. Algebra Comput. 16(1) (2006), 119–140.
  • [13] M. Jackson, M. V. Volkov, The algebra of adjacency patterns: Rees matrix semigroups with reversion, in: Fields of Logic and Computation, Lecture Notes in Comput. Sci., vol. 6300, Springer-Verlag, 2010, 414–443.
  • [14] Ch. O. Kiselman, A semigroup of operators in convexity theory, Trans. Amer. Math. Soc. 354(5) (2002), 2035–2053.
  • [15] R. L. Kruse, Identities satisfied by a finite ring, J. Algebra 26(2) (1973), 298–318.
  • [16] G. Kudryavtseva, V. Mazorchuk, On Kiselman’s semigroup, Yokohama Math. J. 55(1) (2009), 21–46.
  • [17] E. W. H. Lee, Finite involution semigroups with infinite irredundant bases of identities, Forum Math., in press, see http://dx.doi.org/10.1515/forum-2014-0098 .
  • [18] E. W. H. Lee, Finitely based finite involution semigroups with non-finitely based reducts, Quaest. Math., in press, see http://dx.doi.org/10.2989/16073606.2015.1068239 .
  • [19] E. W. H. Lee, Equational theories of unstable involution semigroups, manuscript.
  • [20] I. V. L’vov, Varieties of associative rings, I, Algebra i Logika 12(3) (1973), 269–297, (Russian), English translation: Algebra and Logic 12(3) (1973), 150–167.
  • [21] R. N. McKenzie, Equational bases for lattice theories, Math. Scand. 27 (1970), 24–38.
  • [22] S. Oates, M. B. Powell, Identical relations in finite groups, J. Algebra 1(1) (1964), 11–39.
  • [23] P. Perkins, Decision Problems for Equational Theories of Semigroups and General Algebras, Ph.D. thesis, University of California, Berkeley, 1966.
  • [24] P. Perkins, Bases for equational theories of semigroups, J. Algebra 11(2) (1969), 298–314.
  • [25] J-E. Pin, Variétés de Langages Formels, Masson, 1984, (French), English translation: Varieties of Formal Languages, North Oxford Academic, 1986 and Plenum, 1986.
  • [26] O. Sapir, Finitely based monoids, Semigroup Forum 90(3) (2015), 587–614.
  • [27] O. Sapir, Non-finitely based monoids, Semigroup Forum 90(3) (2015), 557–586.
  • [28] I. Simon, Hierarchies of Events of Dot-Depth One, Ph.D. thesis, University of Waterloo, 1972.
  • [29] I. Simon, Piecewise testable events, Proc. 2nd GI Conf., Lecture Notes in Comput. Sci., vol.33, Springer-Verlag, 1975, 214–222.
  • [30] A. Solomon, Catalan monoids, monoids of local endomorphisms, and their presentations, Semigroup Forum 53(3) (1996), 351–368.
  • [31] H. Straubing, On finite J-trivial monoids, Semigroup Forum 19(2) (1980), 107–110.
  • [32] M. V. Volkov, The finite basis problem for finite semigroups, Sci. Math. Jpn. 53(1) (2001), 171–199, a periodically updated version is avalaible under http://csseminar.imkn.urfu.ru/MATHJAP_revisited.pdf .
  • [33] M. V. Volkov, Reflexive relations, extensive transformations and piecewise testable languages of a given height, Internat. J. Algebra Comput. 14(5–6) (2004), 817–827.
  • [34] W. T. Zhang, Y. F. Luo, A new example of a minimal nonfinitely based semigroup, Bull. Austral. Math. Soc. 84(3) (2011), 484–491.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f99bdc9-6117-4a30-a8c9-2193b9f1ac02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.