Warianty tytułu
Języki publikacji
Abstrakty
The work presented a facile, one-step procedure as a green assembly process for preparing silver tungstate nanorod by hydrothermal technique via a chemical reaction between silver nitrate and sodium tungstate. The synthesized precipitate was characterized using X-ray diffraction (XRD) transmission electronic microscope (TEM) and scanning electron microscopy (SEM) to ensure the formation of crystallization and single-phase material. The prepared nanorods undergo a catalytic evaluation to synthesize tetrahydrobenzo[a] xanthene-11-one derivatives by a one-pot reaction of β-naphthol, dimedone, and aromatic aldehyde with a catalytic amount of silver tungstate under the solvent-free condition at 60–70 °C. ArgC is one of the L-arginine biosynthetic pathways of mycobacterium tuberculosis. The molecular docking explains that all the synthesized compounds presented high ligand ability for the targeted enzyme compared with xanthene-9-carboxylic acid as a reference.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wz.
Twórcy
autor
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Saudi Arabia
autor
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Saudi Arabia
autor
- School of Health and Biomedical Sciences, RMIT University, Australia
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Egypt
autor
- Organometallic and Organometalloid Chemistry Department, Egypt, ashraf_salmoon@yahoo.com
autor
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Saudi Arabia
Bibliografia
- 1. Araujo, R.O., Santos, V.O., Ribeiro, F.C., Chaar, J.D.S., Falcão, N.P. & de Souza, L.K. (2021). One-step synthesis of a heterogeneous catalyst by the hydrothermal carbonization of acai seed. Reac. Kinet. Mech. Cat. 134, 199–220. DOI: 10.1007/s11144-021-02059-9.
- 2. Yan, H., Ren, Y., Zhang, R., Chang, F., Wei, Q. & Xu, J. (2023). A One-Pot Hydrothermal Preparation of High Loading Ni/La2O3 Catalyst for Efficient Hydrogenation of Cinnamalde-hyde. Catalysts 13(2), 298. DOI: 10.3390/catal13020298.
- 3. Wang, X., Fu, C., Wang, P., Yu, H. & Yu, J. (2013). Hierarchically porous metastable β-Ag2WO4 hollow nanospheres: controlled synthesis and high photocatalytic activity. Nano-technology 24, 165602. DOI: 10.1088/0957-4484/24/16/165602.
- 4. Roca, R.A., Lemos, P.S., Gracia, L., Andrés, J. & Longo, E. (2017). Uncovering the metastable γ-Ag2WO4 phase: a joint experimental and theoretical study. RSC Adv. 7, 5610–5620. DOI: 10.1039/C6RA24692C.
- 5. Wu, G., Liu, Q., Wang, J., Cai, Z., Li, H., Zhang, T., Lu, R., Li, P., Han, J. & Xing, W. (2021). Synthesis of silver-based composite photocatalysis material and its visible-light-driven photocatalytic degradation of dye pollutants. Fresenius Environ. Bull. 30, 9696–9706.
- 6. Al-Wasidi, A.S. & Abdelrahman, E.A. (2023). Significant photocatalytic decomposition of malachite green dye in aqueous solutions utilizing facilely synthesized barium titanate nanoparticles. Discover Nano. 18, 97. DOI: 10.1186/s11671-023-03873-x.
- 7. Al-Wasidi, A.S., Naglah, A.M., Saad, F.A. & Abdelrahman, E.A. (2022). Modification of silica nanoparticles with 1-hydroxy-2-acetonaphthone as a novel composite for the efficient removal of Ni(II), Cu(II), Zn(II), and Hg(II) ions from aqueous media. Arab. J. Chem. 15, 104010. DOI: 10.1016/j.arabjc.2022.104010.
- 8. Al-Wasidi, A.S., Saad, F.A., Munshi, A.M. & Abdelrahman, E.A. (2023). Facile synthesis and characterization of magnesium and manganese mixed oxides for the efficient removal of tartrazine dye from aqueous media. RSC Adv. 13, 5656–5666. DOI: 10.1039/D3RA00143A.
- 9. Assis, M.D., Castro, M.S., Aldao, C.M., Buono, C., Ortega, P.P., Teodoro, M.D., Andres, J., Gouveia, A.F., Simões, A.Z., Longo, E. & Macchi, C.E. (2023). Disclosing the nature of vacancy defects in α-Ag2WO4. Mater. Res. Bull. 164, 112252. DOI: 10.1016/j.materresbull.2023.112252.
- 10. Jia, X., Xu, G., Du, Z. & Fu, Y. (2018). Cu(BTC)-MOF catalyzed multicomponent reaction to construct 1,4-disubstituted-1,2,3-triazoles. Polyhedron 151, 515–519. DOI: 10.1016/j.poly.2018.05.058.
- 11. Zelefack, F., Guilet, D., Fabre, N., Bayet, C., Chevalley, S., Ngouela, S., Lenta, B.N., Valentin, A., Tsamo, E. & Dijoux-Franca, M.G. (2009). Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod. 72, 954–957. DOI: 10.1021/np8005953.
- 12. Manathanath, M., Sasidharan, S., Saudagar, P., Panicker, U.G. & Sujatha, S. (2022). Photodynamic evaluation of triazine appended porphyrins as anti-leishmanial and anti-tumor agents. Polyhedron 217, 115711. DOI: 10.1016/j.poly.2022.115711.
- 13. Evangelinou, O., Hatzidimitriou, A.G., Velali, E., Pantazaki, A.A., Voulgarakis, N. & Aslanidis, P. (2014). Mixed-ligand copper (I) halide complexes bearing 4, 5-bis (diphenylphosphano)-9, 9-dimethyl-xanthene and N-methylbenzothiazole-2-thione: Synthesis, structures, luminescence and antibacterial activity mediated by DNA and membrane damage. Polyhedron 72, 122–129. DOI: 10.1016/j.poly.2014.02.002.
- 14. Zolfigol, M.A., Moosavi-Zare, A.R., Arghavani-Hadi, P., Zare, A., Khakyzadeh, V. & Darvishi, G. (2012). WCl6 as an efficient, heterogeneous and reusable catalyst for the preparation of 14-aryl-14 H-dibenzo[a, j]xanthenes with high TOF. RSC Adv. 2, 3618–3620. DOI: 10.1039/C2RA00014H.
- 15. Liu, J., Diwu, Z. & Leung, W.Y. (2001). Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg. Med. Chem. Lett. 11, 2903–2905. DOI: 10.1016/S0960-894X(01)00595-9.
- 16. Ahmad, M., King, T.A., Ko, D.K., Cha, B.H. & Lee, J. (2002). Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D: Appl. Phys. 35, 1473. DOI: 10.1088/0022-3727/35/13/303.
- 17. Adjadi, S., Akbari, M., Kahangi, F.G. & Heravi, M.M. (2020). Acidic polymer containing sulfunic acid and carboxylic acid groups heterogenized with natural clay: A novel metal free and heterogeneous catalyst for acid-catalyzed reactions. Polyhedron 179, 114375. DOI: 10.1016/j.poly.2020.114375.
- 18. Chen, X., Pradhan, T., Wang, F., Kim, J.S. & Yoon, J. (2012). Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev. 112, 1910–1956. DOI: 10.1021/cr200201z.
- 19. World Health Organization, Geneva, 2019. Global tuberculosis report 2019. (https://www.who.int/publications/i/item/9789241565714) (accessed 1 March 2024).
- 20. Vilcheze, C. & Jr, W.R.J. (2019). The Isoniazid Paradigm of Killing, Resistance, and Persistence in Mycobacterium tuberculosis. J. Mol. Biol. 431, 3450–3461. DOI: 10.1016/j.jmb.2019.02.016.
- 21. Kai, G., Hualan, W., Shuxin, W., Ying, W. & Jinghua, C. (2015). Efficient synthesis of 1,8-dioxo-octahydroxanthenes catalyzed by β-cyclodextrin grafted with butyl sulfonic acid in aqueous media. Chin. J. Catal. 36, 1249–1255. DOI: 10.1016/S1872-2067(15)60888-9.
- 22. Li, J., Lu, L. & Su, W. (2010). A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett. 51, 2434–2437. DOI: 10.1016/j.tetlet.2010.02.149.
- 23. George, T., Joseph, S. & Mathew, S. (2005). Synthesis and characterization of nanophased silver tungstate. Pramana 65, 793–799. DOI: 10.1007/BF02704077.
- 24 . Said, M. Tarek, A.A. Zen, A.A. Almehizia, A.M. Naglah, T.K. Khatab, Novel Cobalt/vitamin B3 metal-organic framework as nano-catalyst in synthesis of some new bis-indole derivatives with staking validation towards Salmonella DNA. J. Organometallic Chemistry 1008 (2024) 123074. DOI: 10.1016/j.jorganchem.2024.123074.
- 25. Abdel-Latif, E., Khatab, T.K., Fekri, A. & Khalifa, M.E. (2021). Synthesis of New Binary Thiazole-Based Heterocycles and Their Molecular Docking Study as COVID-19 Main Pro-tease (Mpro) Inhibitors. Russ. J. Gen. Chem. 91, 1767–1773. DOI: 10.1134/S1070363221090231.
- 26. Shaker, N., Kandil, E.M., Osama, Y., Khatab, T.K. & Khalifa, M.E. (2021). ZnCl2/SiO2 as a New Catalyst for the Eco-Friendly Synthesis of N-Thiocarbamoyl Pyrazoles and Thiosemicarbazones with Antioxidant and Molecular Docking Evaluation as (UppS) Inhibitor. Curr. Org. Chem. 25, 2037–2044. DOI: 10.2174/1385272825666210809142341.
- 27. Khatab, T.K., Kandil, E.M., Elsefy, D.E. & El-Mekabaty, A. (2021). A One-Pot Multicomponent Catalytic Synthesis of New 1H-Pyrazole-1-Carbothioamide Derivatives with Molecular Docking Studies as COX-2 Inhibitors. Biointerf. Res. Appl. Chem. 11, 13779–13789. DOI: 10.33263/BRIAC116.1377913789.
- 28. Khatab, T.K., Mubarak, A.Y. & Soliman, H.A. (2017). Design and Synthesis Pairing Between Xanthene and Tetrazole in Pentacyclic System Using Tetrachlorosilane with Aurora Kinase Inhibitor Validation. J. Heter. Chem. 54, 2463–2470. DOI: 10.1002/jhet.2846.
- 29. Khatab, T.K. Hassan, A.S. & Hafez, T.S. (2019). V2O5/SiO2 as an efficient catalyst in the synthesis of 5-amino-pyrazole derivatives under solvent free condition. Bull. Chem. Soc. Ethiop. 33, 135–142. DOI: 10.4314/bcse.v33i1.13.
- 30. Soliman, H.A. & Khatab, T.K. (2018). New Approach for Tetrachlorosilane Promoted One-Pot, Condensation Reaction for Tetrahydrobenzo[a]Xanthene-11-Ones with Docking Validation as Aurora Kinase Inhibitor. Silicon 10, 229–233. DOI: 10.1007/s12633-016-9421-0.
- 31. Soliman, H.A., Khatab, T.K. & Abdel-Megeid, F.M. (2016). Utilization of bromine azide to access vicinal-azidobromides from arylidene malononitrile. Chin. Chem. Lett. 27, 1515–1518. DOI: 10.1016/j.cclet.2016.03.026.
- 32. Said, G.E., Tarek, M., Al-Wasidi, A.S., Naglah, A.M., Almehizia, A.A. & Khatab, T.K. (2024). Niacin based MOF as efficient nano-catalyst in the synthesis of some new benzothiazoles and benzimidazoles as anti-Alzheimer (AChE inhibitors). J. Mol. Struct. 1311, 138462. DOI: 10.1016/j.molstruc.2024.138462.
- 33. Almehizia, A.A., Naglah, A.M., Zen, A.A., Khatab, T.K. & Hassan, A.S. (2024). TCS/ZnCl2 as a controlled reagent for the Michael addition and heterocyclic cyclization based on the phenyl pyrazolone scaffold with docking validation as a Covid-19 protease inhibitor. Bull. Chem. Soc. Ethiop. 38, 1119–1127. DOI: 10.4314/bcse.v38i4.24.
- 34. Hassan, A.S., Hafez, T.S., Ali, M.M. & Khatab, T.K. (2016). Design, synthesis and cytotoxic activity of some new pyrazolines bearing benzofuran and pyrazole moieties. Res. J. Pharm. Biol. Chem. Sci. 7, 417–429. DOI: http://www.rjpbcs.com/pdf/2016_7(4)/[60].pdf
- 35. Javid, A., Heravi, M.M. & Bamoharram, F.F. (2012). One-pot three-component synthesis of β-acetamido carbonyl compounds catalyzed by heteropoly acids. Monatsh. Chem. 143, 831–834. DOI: 10.1007/s00706-011-0669-1.
- 36. Gupta, P., Thomas, S.E., Zaidan, S.A., Pasillas, M.A., Cory-Wright, J., Sebastián-Pérez, V., Burgess, A., Cattermole, E., Meghir, C., Abell, C. & Coyne, A.G. (2021). A fragment-based approach to assess the ligandability of ArgB, ArgC, ArgD and ArgF in the L-arginine biosynthetic pathway of Mycobacterium tuberculosis. Comput Struct Biotechnol J. 19, 3491–3506. DOI: 10.1016/j.csbj.2021.06.006.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f278471-643a-4297-827b-7834c1d4b733