Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 6 | 2085--2097
Tytuł artykułu

Investigation on the statistical characteristics of geoelectric field seismic anomalies in the North–South seismic belt of Chinese mainland

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geoelectric field (GEF) measurements have documented many pre-earthquake electromagnetic anomalies over the past few decades. However, the statistical characteristics between earthquakes and GEF are still unclear. In this paper, we use the shifting correlation method to analyze the statistical features of earthquake precursory information in GEF data recorded in the North–South seismic belt of Chinese mainland during 2010–2019. Three factors, seismic energy, epicentral distance (D), and the fault, were used to select the seismic events. In the analysis section, the results of two significance test methods were used as the anomaly standard. The results show that the GEF anomalies associated with seismic events appear about 30 days before the earthquakes, and the anomalies appear earlier at stations farther away from the epicenter. In addition, the selective characteristics of the GEF are strongly correlated with the location of stations and the geological-tectonic environment in which the epicenter is located. Moreover, the results approved the empirical conclusion that the larger the seismic energy is, the larger the impact area is. The statistical characteristics of the seismic GEF anomalies in the North–South seismic belt of Chinese mainland may provide technical support for exploring the phenomenon and mechanism of seismic GEF.
Wydawca

Czasopismo
Rocznik
Strony
2085--2097
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
  • Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
  • Gansu Lanzhou Geophysics National Observation and Research Station, Lanzhou 730000, China
  • Earthquake Administration of Gansu Province, Lanzhou 730000, Gansu, China
  • Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China, anzhanghui5@hotmail.com
  • Gansu Lanzhou Geophysics National Observation and Research Station, Lanzhou 730000, China
  • Earthquake Administration of Gansu Province, Lanzhou 730000, Gansu, China
  • Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
  • Gansu Lanzhou Geophysics National Observation and Research Station, Lanzhou 730000, China
  • Earthquake Administration of Gansu Province, Lanzhou 730000, Gansu, China
  • Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
  • Gansu Lanzhou Geophysics National Observation and Research Station, Lanzhou 730000, China
  • Earthquake Administration of Gansu Province, Lanzhou 730000, Gansu, China
autor
  • Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
  • Gansu Lanzhou Geophysics National Observation and Research Station, Lanzhou 730000, China
  • Earthquake Administration of Gansu Province, Lanzhou 730000, Gansu, China
autor
  • Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
  • Gansu Lanzhou Geophysics National Observation and Research Station, Lanzhou 730000, China
  • Earthquake Administration of Gansu Province, Lanzhou 730000, Gansu, China
Bibliografia
  • 1. An ZH, Du XB, Fan YY et al (2015) Characteristics of Geo-electric Field Changes before the 2013 Lushan MS7.0 Earthquake (in Chinese). Earthquake 35(1):91–99
  • 2. Chen L, Liu J, Chen O et al (1998) Aftershock deletion in seismicity analysis. Chin J Geophys 41(S1):244–252
  • 3. Chen Q, An ZH, Fan YY (2019) Statistical evidence of tidal triggered earthquake in north and south seismic belt. Progress in Geophysics (in Chinese) 34(5):1714–1720
  • 4. Console R, Gasparini C, De Simoni B et al (1979) Preambolo al Catalogo Sismico Nazionale (CSN). I criteri di informazione del Catalogo Sismico Nazionale (CSN)[J]. Annal Geophys 32(1):37–77. https://doi.org/10.4401/ag-4729
  • 5. Cui TF, Du XB, Ye Q et al (2013) The diurnal variation of geo-electric field along the longitude and latitude chains in China mainland. Chin J Geophys 56(7):2358–2368. https://doi.org/10.1002/cjg2.20039
  • 6. Deng QD, Zhang PZ, Ran YK et al (2003) Active tectonics and earthquake activities in China. Earth Sci Front 10(S1):66–73
  • 7. Eftaxias K, Kapiris P, Polygiannakis J et al (2001) Signature of pending earthquake from electromagnetic anomalies. Geophys Res Lett 28(17):3321–3324. https://doi.org/10.1029/2001GL013124
  • 8. Eftaxias K, Balasis G, Contoyiannis Y et al (2010) Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones - Part 2. Natural Hazards and Earth System Science 10(2):275–294. https://doi.org/10.5194/nhess-10-275-2010
  • 9. Enomoto Y (2012) Coupled interaction of earthquake nucleation with deep Earth gases: a possible mechanism for seismo-electromagnetic phenomena. Geophys J Int 191(3):1210–1214. https://doi.org/10.1111/j.1365-246X.2012.05702.x
  • 10. Fan YY, Du XB, Zlotnicki Jacques et al (2010) The electromagnetic phenomena before the MS8.0 Wenchuan earthquake. Chin J Geophys 53(12):2887–2898. https://doi.org/10.1002/cjg2.1570
  • 11. Freud FT (2007) Pre-earthquake signals-Part I: deviatoric stresses turn rocks into a source of electric currents[J]. Nat Hazards Earth Syst Sci 7(5):535–541. https://doi.org/10.5194/nhess-7-535-2007
  • 12. Fujinawa Y, Takahashi K (1998) Electromagnetic radiations associated with major earthquakes. Phys Earth Planet Inter 105(3–4):249–259. https://doi.org/10.1016/S0031-9201(97)00117-9
  • 13. Gao YX, Hu HS (2010) Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium. Geophys J Int 181(2):873–896. https://doi.org/10.1111/j.1365-246X.2010.04526.x
  • 14. Gao YX, Chen XF, Hu HS et al (2013a) Early electromagnetic waves from earthquake rupturing: I. Theoretical Formulations. Geophys J Int 192(3):1288–1307. https://doi.org/10.1093/gji/ggs096
  • 15. Gao YX, Chen XF, Hu HS et al (2013) Early electromagnetic waves from earthquake rupturing: II. Validation and numerical experiments. Geophys J Int 192(3):1308–1323. https://doi.org/10.1093/gji/ggs097
  • 16. Geller RJ (1996) Debate on evaluation of the VAN method: Editor’s introduction. Geophys Res Lett 23(11):1291–1293. https://doi.org/10.1029/96GL00742
  • 17. Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geophys 9:1–15. https://doi.org/10.1144/GSL.JGS.1956.112.01-04.02
  • 18. Guzmán-Vargas L, Ramírez-Rojas A, Angulo-Brown F (2008) Multiscale entropy analysis of electroseismic time series. Nat Hazards Earth Syst Sci 8(4):855–860. https://doi.org/10.5194/nhess-8-855-2008
  • 19. Han P (2009) Principal component analysis of geomagnetic diurnal variation associated with earthquakes: case study of the M 6.1 Iwateken Nairiku Hokubu earthquake[J]. Chin J Geophys 52:1556–1563
  • 20. Han P, Hattori K, Hirokawa M et al (2014) Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001–2010. J Geophys Res: Space Phys 119:4998–5011. https://doi.org/10.1002/2014JA019789
  • 21. Han P, Hattori K, Xu G et al (2015) Further investigations of geomagnetic diurnal variations associated with 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). J Asian Earth Sci 114:321–326. https://doi.org/10.1016/j.jseaes.2015.02.022
  • 22. Han P, Hattori K, Huang QH, Hirooka S, Yoshino C (2016a) Spatiotemporal characteristics of the geomagnetic diurnal variation anomalies prior to the 2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple pre-earthquake phenomena. J Asian Earth Sci 129:13–21. https://doi.org/10.1016/j.jseaes.2016.07.011
  • 23. Han P, Hattori K, Zhuang J et al (2016b) Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys J Int 208:482–490. https://doi.org/10.1093/gji/ggw404
  • 24. Hattori K, Serita A, Gotoh K et al (2004) ULF geomagnetic anomaly associated with 2000 Izu Islands earthquake swarm, Japan[J]. Phys Chem Earth 29(4/9):425–435
  • 25. Hattori K, Serita A, Yoshino C, Hayakawa M, Isezaki N (2006) Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island Earthquake Swarm. Phys Chem Earth 31(4–9):281–291. https://doi.org/10.1016/j.pce.2006.02.034
  • 26. Huang QH, Ikeya M (1998) Seismic electromagnetic signals (SEMS) explained by a simulation experiment using electromagnetic waves. Phys Earth Planet Inter 109(3):107–114. https://doi.org/10.1016/S0031-9201(98)00135-6
  • 27. Huang QH, Lin Y (2010) Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model. Proc Jpn Acad Ser B Phys Biol Sci 86(3):257–264. https://doi.org/10.2183/pjab.86.257
  • 28. Ida Y, Hayakawa M (2006) Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. Nonlinear Process Geophys 13(4):409–412. https://doi.org/10.5194/npg-13-409-2006
  • 29. Ida Y, Yang D, Li H et al (2012) Fractal analysis of ULF electromagnetic emissions in possible association with earthquakes in China. Nonlinear Process Geophys 19:577–583. https://doi.org/10.5194/npg-19-577-2012
  • 30. Ifantis A, Economou G, Despotopoulos S et al (1997) Exploratory analysis of electrotelluric field data for earthquake prediction. DSP 1997:973–976. https://doi.org/10.1109/ICDSP.1997.628526
  • 31. Ifantis A (2002) A New approach to investigate the correlation between periodicity of geoelectric field and earthquakes. In: International Conference on Digital Signal Processing, DSP (Vol. 2, pp. 905–910). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICDSP.2002.1028237
  • 32. Jiang F, Chen X, Zhan Y, Zhao G, Yang H, Zhao L, Qiao L, Wang L (2016) Shifting correlation between earthquakes and electromagnetic signals: a case study of the 2013 Minxian-Zhangxian M L 6.5 (M W 6.1) earthquake in Gansu, China. Pure Appl Geophys 173(1):269–284. https://doi.org/10.1007/s00024-015-1055-4
  • 33. Kotsarenko A, Molchanov O, Hayakawa M et al (2005) Investigation of ULF magnetic anomaly during Izu earthquake swarm and Miyakejima volcano eruption at summer 2000, Japan. Nat Hazard 5:63–69. https://doi.org/10.5194/nhess-5-63-2005
  • 34. Nitsan U (1977) Electromagnetic emission accompanying fracture of quartz-bearing rocks[J]. Geophys Res Lett 4(8):333–336. https://doi.org/10.1029/GL004i008p00333
  • 35. Orihara Y, Noda Y, Nagao T et al (2002) A possible case of SES selectivity at Kozu-shima Island Japan. J Geodyn 33(4–5):425–432. https://doi.org/10.1016/S0264-3707(02)00005-4
  • 36. Orihara Y, Kamogawa M, Nagao T, Uyeda S (2012) Preseismic anomalous telluric current signals observed in Kozushima Island, Japan. Proc Natl Acad Sci 109(47):19125–19128. https://doi.org/10.1073/pnas.1215669109
  • 37. Panfilov AA (2014) The results of experimental studies of VLF-ULF electromagnetic emission by rock samples due to mechanical action[J]. Nat Hazard 14(6):1383. https://doi.org/10.5194/nhess-14-1383-2014
  • 38. Potirakis SM, Minadakis G, Eftaxias K (2012) Relation between seismicity and pre-earthquake electromagnetic emissions in terms of energy, information and entropy content. Nat Hazard 12:1179–1183. https://doi.org/10.5194/nhess-12-1179-2012
  • 39. RamírezRojas A, FloresMárquez E. L, GuzmánVargas L, GálvezCoyt G, Telesca L, Angulobrown F (2008) Statistical features of seismoelectric signals prior to m7.4 guerrero-oaxaca earthquake (méxico). Natural Hazards and Earth System Sciences, 8(5), 1001-1007. https://doi.org/10.5194/nhess-8-1001-2008
  • 40. Sarlis NV (2018) Statistical significance of earth’s electric and magnetic field variations preceding earthquakes in Greece and Japan revisited. Entropy. https://doi.org/10.3390/e20080561
  • 41. Sarlis N, Lazaridou M, Kapiris P et al (1999) Numerical model of the selectivity effect and the ΔV/L criterion. Geophys Res Lett 26(21):3245–3248. https://doi.org/10.1029/1998GL005265
  • 42. Sobolev GA (1975) Application of Electric Method to the Tentative Short-Term Forecast of Kamchatka Earthquakes. In: Wyss M (ed) Earthquake Prediction and Rock Mechanics. Contributions to Current Research in Geophysics (CCRG), Birkhäuser, Basel
  • 43. Tan DC, Zhao JL, Xi JL et al (2010) (2010) A study on feature and mechanism of the tidal geoelectrical field. Chin J Geophys (in Chinese) 53(3):544–555. https://doi.org/10.3969/j.issn.0001-5733.2010.03.008
  • 44. Uyeda S (2000) In defense of VAN’s earthquake predictions. EOS Trans Am Geophys Union 81:3–3. https://doi.org/10.1029/00EO00005
  • 45. Uyeda S, Kumamoto A (2004) Evaluation of the Kushida Method of short-term earthquake prediction. Proc Jpn Acad Ser B 80(3):140–147. https://doi.org/10.2183/pjab.80.140
  • 46. Uyeda S, Nagao T, Orihara Y et al (2000) Geoelectric potential changes: possible precursors to earthquakes in Japan. Proc Natl Acad Sci 97(9):4561–4566. https://doi.org/10.1073/pnas.97.9.4561
  • 47. Uyeda S, Hayakawa M, Nagao T et al (2002) Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc Natl Acad Sci 99(11):7352–7355. https://doi.org/10.1073/pnas.072208499
  • 48. Vallianatos F, Triantis D (2008) Scaling in Pressure Stimulated Currents related with rock fracture. Physica A 387(19–20):4940–4946. https://doi.org/10.1016/j.physa.2008.03.028
  • 49. Varotsos P, Alexopoulos K (1984a) Physical properties of the variations of the electric field of the earth preceding earthquakes, I. Tectonophysics 110(1–2):73–98. https://doi.org/10.1016/0040-1951(84)90059-3
  • 50. Varotsos P, Alexopoulos K (1984) Physical properties of the variations of the electric field of the earth preceding earthquakes. II. Determination of epicenter and magnitude. Tectonophysics 110(1–2):99–125. https://doi.org/10.1016/0040-1951(84)90060-X
  • 51. Varotsos PA, Alexopoulous K, Nomicos K (1981) Seismic electric currents. Praktica Athens Acad 56:277–286
  • 52. Varotsos P, Alexopoulos K, Lazaridou M (1993) Latest aspects of earthquake prediction in Greece based on seismic electric signals II. Tectonophysics 224(1):1–37. https://doi.org/10.1016/0040-1951(93)90055-O
  • 53. Varotsos P, Sarlis N, Lazaridou M, Kapiris P (1998) Transmission of stress induced electric signals in dielectric media. J Appl Phys 83(1):60–70. https://doi.org/10.1063/1.366702
  • 54. Varotsos P, Sarlis N, Skordas E et al (2005) Additional evidence on some relationship between Seismic Electric Signals (SES) and earthquake focal mechanism. Tectonophysics 412(3):279–288. https://doi.org/10.1016/j.tecto.2005.10.037
  • 55. Wang XS, Lü J, Xie ZJ et al (2015) Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China. Chin J Geophys 58(11):4149–4162. https://doi.org/10.6038/cjg20151122
  • 56. Zhang JG, Jiao LG, Liu XC et al (2013) A study on the characteristics of ULF electromagnetic spectrum before and after the Wenchuan MS8.0 earthquake. Chin J Geophys 56(4):1253–1261. https://doi.org/10.6038/cjg20130420
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-65e5524c-354b-4ac1-9b7b-56a63c96becb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.