Warianty tytułu
Języki publikacji
Abstrakty
Highly dispersed olive-like NiS particles were synthesized in a liquid-liquid biphasic system at room temperature, where nickel xanthate in organic solvents (toluene and benzene) and sodium sulfide in water solution were used as nickel and sulfide sources, respectively. NiS particles were formed at the stabilized phase interface. The structures, chemical composition and optical characteristics of the products were investigated by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. The organic solvents obviously influenced the morphology of the NiS particles. The olive-like NiS with smooth surface and sharp ends was obtained at benzene/water interface, while spindle-like NiS particles with rough surface and circle ends were formed when using toluene as a solvent. Analogously, chainlike Bi2S3 nanowires were produced at chloroform/water interface. The effect of the experiment parameters including reaction time, solvent and concentration of reactants on the size and morphology of the products was discussed in detail and a possible formation mechanism was suggested.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--5
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education
autor
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
autor
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education
autor
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, hanqiaofeng@njust.edu.cn
Bibliografia
- [1] GENG J., ZHU J.J., CHEN H.Y., Cryst. Growth Des., 6 (2006), 321.
- [2] RAULA M., RASHID M.H., PAIRA T.K., DINDA E., MANDAL T.K., Langmuir, 26 (2010), 8769.
- [3] LU J., CHEN D., JIAO X., J. Colloid Inter. Sci., 303 (2006), 437.
- [4] WANG H., ZHANG J.R., ZHAO X.N., XU S., ZHU J.J., Mater. Lett., 55 (2002), 253.
- [5] WEI F., LI G., ZHANG Z., Mater. Res. Bull., 40 (2005), 1402.
- [6] WELTERS W., VORBECK G., ZANDBERGEN H., DEHAAN J., DEBEER V., VANSANTEN R., J. Catal., 150 (1994), 155.
- [7] GHEZELBASH A., SIGMAN JR M.B., KORGEL B.A., Nano lett., 4 (2004), 537.
- [8] HU Y., CHEN J., CHEN W., LI X., Adv. Funct. Mater., 14 (2004), 383.
- [9] CHEN D., GAO L., J. Cryst. Growth, 262 (2004), 554.
- [10] CHEN D., GAO L., ZHANG P., Chem. Lett., 32 (2003), 996.
- [11] LIN Y., SKAFF H., EMRICK T., DINSMORE A., RUSSELL T., Science, 299 (2003), 226.
- [12] RAO C.N.R., KALYANIKUTTY K., Accounts Chem. Res., 41 (2008), 489.
- [13] RAO C.N.R., KULKARNI G., THOMAS P.J., AGRAWAL V.V., SARAVANAN P., J. Phys. Chem. B, 107 (2003), 7391.
- [14] GAUTAM U.K., GHOSH M., RAO C.N.R., Chem. Phys. Lett., 381 (2003), 1.
- [15] LUO K., SCHROEDER S.L.M., DRYFE R.A.W., Chem. Mater., 21 (2009), 4172.
- [16] LIANG X., XING L., XIANG J., ZHANG F., JIAO J., CUI L., SONG B., CHEN S., ZHAO C., SAI H., Cryst. Growth Des., 12 (2012), 1173.
- [17] TAKEDA S., WILTZIUS P., Chem. Mater., 18 (2006), 5643.
- [18] FAN D., THOMAS P.J., O’BRIEN P., Chem. Phys. Lett., 465 (2008), 110.
- [19] HAN Q., YUAN Y., LIU X., WU X., BEI F., WANG X., XU K., Langmuir, 28 (2012), 6726.
- [20] HAN Q., CHEN J., YANG X., LU L., WANG X., J. Phys. Chem. C, 111 (2007), 14072.
- [21] GROSVENOR A.P., BIESINGER M.C., SMART R.S.C., MCINTYRE N.S., Surf. Sci., 600 (2006), 1771.
- [22] JIANG F., MUSCAT A.J., Langmuir, 28 (2012), 12931.
- [23] NAKAMURA M., FUJIMORI A., SACCHI M., FUGGLE J., MISU A., MAMORI T., TAMURA H., MATOBA M., ANZAI S., Phys. Rev. B, 48 (1993), 16942.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6a371338-20d7-4cd3-9e48-0185a66c4b57