Czasopismo
2015
|
Vol. 19, nr 2
|
103--118
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this part we present the algebraic calculus computations related to the Hamiltonian equations of motion for the Jupiter – Saturn subsystem. Also we give a comment on the methods of the solution for the system of linear and nonlinear differential equations describing the motion of this subsystem.
Czasopismo
Rocznik
Tom
Strony
103--118
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Astronomy and Space Science Dept., Faculty of Sciences, Cairo University Giza, Egypt, kamel osman@yahoo.com
autor
- Theoretical Physics Dept. Physics Division, National Research Center Dokki, Giza, Egypt, adelssoliman7@yahoo.com
Bibliografia
- [1] Kamel, O. S. M.: M.Sc. Thesis, submitted to the Faculty of Sciences, Cairo University, Egypt, 1970.
- [2] Kamel, O. S. M.: PH.D. Thesis, submitted to the Faculty of Sciences, Cairo University, Egypt, 1973.
- [3] Kamel, O. S. M. and Bakry, A. A.: Astrophysics and Space Science, 78, 3–26, 1981.
- [4] Kamel, O. M.: The Moon and the Planets, 26, 239–277, 1982.
- [5] Brouwer, D. and Clemence, G. M.: Methods of Celestial Mechanics, Academic Press, 1965.
- [6] Murray, C. D. and Dermott, S. F.: Solar System Dynamics, Cambridge University Press, 1999.
- [7] Moursund, D. and Duris, C. S.: Elementary Theory & Application of Numerical Analysis, McGraw { Hill, Inc, 1967.
- [8] Braun, M.: Differential Equations and Their Applications, Springer – Verlag, New York, Inc. (1983).
- [9] Stark, P. A.: Introduction to numerical methods, MacMillan Company, London, (1970).
- [10] Kamel, O. M.: A semi – analytic first order Jupiter – Saturn planetary theory. Part I, Mechanics and Mechanical Engineering, 19, no. 1, pp–26, 1981.
- [11] El Mabsout, B.: Private communication, 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2ca4718f-1d44-41f1-94fb-cdd80450f330