Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 2 | 1--8
Tytuł artykułu

Feasible Technology for Agricultural Residues Utilization for the Obtaining of Value-Added Products

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research is connected with the solving the problem of rational utilization of agricultural residues by the creation of resource-saving method for their efficient conversion into value-added products. Wheat straw was used in this work in chemical processing. Treatment was carried out with the application of formic/acetic acid mixture. Thus, cellulosic pulp was obtained. The spent solution was used to precipitate lignin. The structure of lignin was investigated. The results indicated that formic/acetic acid treatment was quite effective in isolating cellulose from wheat straw and in recovering lignin. Wheat cellulose is a promising fibrous material for the application in paper industry. Wheat lignin can be considered as a material for biosorbent preparation.
Słowa kluczowe
Wydawca

Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Ecology and Technology of Plant Polymers, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
autor
  • Department of Ecology and Technology of Plant Polymers, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine, v.galysh@gmail.com
  • Laboratory of Kinetics and Mechanisms of Chemical Transformations on the Surface of Solids, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov St. 17, 03164 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
Bibliografia
  • 1. Bsoul A.A., Zeatoun L., Abdelhay A., Chiha M. 2014. Adsorption of copper ions from water by different types of natural seed materials. Desalin. Water. Treat., 52, 5876–5882.
  • 2. Kartel M., Galysh V. 2017. New composite sorbents for caesium and strontium ions sorption. Chemistry Journal of Moldova, 12(1), 37–44.
  • 3. Gorobets S., Karpenko Y. 2017. The development of a magnetically operated biosorbent based on the yeast saccharomyces cerevisiae for removing copper cations Cu2+. Eastern-European Journal of Enterprise Technologies, 1(6–85), 28–34.
  • 4. Halysh V., Trus I., Nikolaichuk A., Skiba M., Radovenchy I., Deykun I., Vorobyva V., Vasylenko I., Sirenko L. 2021. Spent biosorbents as additives in cement production. J. Ecol. Eng., 21(2), 131–138.
  • 5. Trembus I.V., Sokolovska N.V., Halysh V.V., Nosachova J.V., Overchenko T.A. 2019. Low-temperature method for manufacturing of cellulose from wheat straw. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 116–122.
  • 6. Kamoga O.L.M., Byaruhanga J.K., Kirabira 2013. A review on pulp manufacture from non wood plant materials. Int. J. Chem. Eng. Appl., 4(3), 144–148.
  • 7. Trembus I.V., Trophimchuk J.S., Galysh V.V. 2018. Obtaining of pulp from sulnflower stalks with peracids shells. Voprosy khimii i khimicheskoi tekhnologii, 2, 122–127.
  • 8. Schulze P., Seidel-Morgenstern A., Lorenz H., Leschinsky M., Unkelbach G. 2016. Advanced process for precipitation of lignin from ethanol organosolv spent liquors. Bioresour. Technol., 199, 128–134.
  • 9. Salapa I., Katsimpouras C., Topakas E., Sidiras D. 2017. Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass and Bioenergy, 100, 10–16.
  • 10. Shui T., Feng S., Yuan Z., Kuboki T., Xu C. 2016. Highly eficiente organosolv fractionation of cornstalk into cellulose and lignin in organic acids. Bioresour. Technol., 218, 953–961.
  • 11. de Carvalho D.M., Sevastyanova O., Penna L.S., da Silva B.P., Lindström M.E., Colodette J.L. 2015. Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind. Crops. Prod., 73, 118–126.
  • 12. Liao J.J., Abd Latif N.H., Trache D., Brosse N., Hussin M.H. 2020. Current advancement on the isolation, characterization and application of lignin. International journal of biological macromolecules, 162, 985–1024.
  • 13. Mamleeva N.A., Kharlanov A.N., Lunin V.V. 2013. Delignification of deciduous wood under the action of hydrogen peroxide and ozone. Russian Journal of Physical Chemistry A, 87(1), 28–34.
  • 14. Deykun I., Halysh V., Barbash V. 2018. Rapeseed straw as an alternative for pulping and papermaking. Cellulose Chem. and Technol., 52, 833–839.
  • 15. Sarwar Jahan M., Nayeem Rumme J. 2014. Formic acid/water pulping of agricultural wastes. Cellulose Chem. and Technol., 48(1–2), 111–118.
  • 16. Halysh V., Trembus I., Deykun I., Ostapenko A., Nikolaichuk A., Ilnitska G. 2018. Development of effective technique for the disposal of the Prunus Armeniaca seed shells. Eastern-European Journal of Enterprise Technologies, 1, 4–9.
  • 17. Cheng F., Sun J., Wang Z., Zhao X., Hu Y. 2019. Organosolv fractionation and simultaneous conversion of lignocellulosic biomass in aqueous 1, 4-butanediol/acidic ionic-liquids solution. Ind. Crops. Prod., 138, 111573.
  • 18. Gong W., Xiang Z., Ye F., Zhao G. 2016. Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo ( Dendrocalamus Latiforus ). Ind. Crops. Prod., 91, 340–349.
  • 19. Zhang Y., Hou Q., Fu Y., Xu C., Smeds A.I., Willför S., Wang Z., Li Z., Qin M. 2018. One-step fractionation of the main components of bamboo by formic acid-based organosolv process under pressure. J. Wood. Chem. Technol., 38, 170–182.
  • 20.Barbash V., Poyda V., Deykun I. 2011. Peracetic acid pulp from annual plants. Cellulose Chem. and Technol., 45(9), 613–618.
  • 21. Halysh V., Sevastyanova O., de Carvalho D.M., Riazanova A.V., Lindström M.E., Gomelya M. 2019. Effect of oxidative treatment on composition and properties of sorbents prepared from sugarcane residue. Ind. Crop Prod., 139, 111566.
  • 22.Barbash V., Trembus I., Shevchenko V. 2014. Ammonia-sulfite-ethanol pulp from wheat straw. Cellulose Chem. and Technol., 48(3–4), 345–353.
  • 23. Sammons R.J., Harper D.P., Labbé N., Bozell J.J., Elder T., Rials T.G. 2013. Characterization of Organosolv Lignins using Thermal and FT-IR Spectroscopic Analysis. BioResources, 8(2), 2752–2767.
  • 24. Dörrstein J., Scholz R., Schwarz D., Schieder D., Sieber V., Walther F., Zollfrank C. 2018. Dataset on the structural characterization of organosolv lignin obtained from ensiled Poaceae grass and load-dependent molecular weight changes during thermoplastic processing. Data in Brief, 17, 647–652.
  • 25. Köhnke J., Gierlinger N., Mateu B.P., Unterweger C., Solt P., Mahler A.K., Schwaiger E., Liebner F., Gindl-Altmutter W. 2019. Comparison of four technical lignins as resource for electrically conductive carbon particle. Bioresources, 14(1), 1091–1109.
  • 26. Gupta V.K., Nayak A., Agarwal S. 2015. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res., 20, 1–18.
  • 27. Conrad E.K., Nnaemeka O.J., Chris A.O. 2015. Adsorption removal of Methylene Blue from aqueous solution using agricultural waste: equilibrium, kinetic and thermodynamic studies. American Journal of Chemistry and Materials Science, 2, 14–15.
  • 28. Halysh V., Sevastyanova O., Pikus S., Dobele G., Pasalskiy B., Gun’ko V.M., Kartel M. 2020. Sugarcane bagasse and straw as low-cost lignocellulosic sorbents for the removal of dyes and metal ions from water. Cellulose, 27, 8181–8197.
  • 29. Trus I., Radovenchyk I., Halysh V., Skiba M., Vasylenko I., Vorobyova V., Hlushko O., Sirenko, L. 2019. Innovative approach in creation of integrated technology of desalination of mineralized water. J. Ecol. Eng., 20(8), 107–113.
  • 30. Radovenchyk I., Trus I., Halysh V., Krysenko T., Chuprinov E., Ivanchenko A. 2021. Evaluation of Optimal Conditions for the Application of Capillary Materials for the Purpose of Water Deironing. Ecol. Eng. Environ. Technol., 22(2), 1–7.
  • 31. Fathy N.A., El-Shafey O.I., Khalil L.B. 2013. Effectiveness of Alkali-Acid Treatment in Enhancement the Adsorption Capacity for Rice Straw: The Removal of Methylene Blue Dye. ISRN Physical Chemistry, 208087.
  • 32. Liu L., Gao Z.L., Su X.P., Chen X., Jiang L., Yao J.M. 2015. Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-based Bioadsorbent. ACS Sustain. Chem. Eng., 3, 432–442.
  • 33. Zhang S., Wang Z., Zhang Y., Pan H., Tao L. 2016. Adsorption of Methylene Blue on Organosolv Lignin from Rice Straw. Procedia Environ. Sci., 31, 3–11.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6fe1bd65-9dfd-459b-85a7-578246137d9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.