Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Our aim was to obtain functionalized nanotubular oxide layer (TNTs) on Ti6Al4V alloy and evaluate its efficiency as a platform for electrochemical biosensor of bone remodeling markers. It was also crucial to examinate does the amount of bonded bALP and BMP-2 and antibodies depends from nanotubes diameter and their electrochemical properties. Design/methodology/approach: The antibody specific for bALP and BMP-2 were used to functionalize the TNTs on Ti6Al4V. The spectrophotometry and electrochemical measurements (CV and EIS) were used to examinate the functionalization efficiency and comfirmed sensing properties of the functionalized TNTs on Ti6Al4V alloy. Findings: The obtained results confirmed that TNTs can strongly bind antibodies by physioabsorption and may be a proper platform for biosensing of the selected markers. The protein immobilization efficiency depends over the nanotube diameter and their electrical charge. Thermally modified TNTs with 50 nm diameter on Ti6Al4V strongly bind bALP antibodies and bALP and it can be detected amperometrically. BMP-2 quantitatively binds to the functionalized non annealed charged TNTs with 100 nm diameter, and it is possible to detect it using EIS. Research limitations/implications: The biosensors presented in this work are simple and fast, but this construction is a prototype and need to be optimized to be used in bone remodelling diagnostics. Practical implications: Development of the functionalized TNTs on the Ti6Al4V sensitive for physiological concentrations of the bone remodelling markers may be alternative for immunotests in diagnostic of bone diseases. Moreover the TNTs morphology generates nano roughness over the Ti6Al4V surface and functionalized by antibodies strongly bind bALP or BMP-2 and stimulate bone proliferation. Originality/value: Unique value of this research is the statement the amount of bonded markers and antibodies depends from TNTs diameter and electrochemical properties, and that the prototype of novel biosensor electrode was developed.
Rocznik
Tom
Strony
53--61
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
- Department of Mechanical Engineering, University of Zielona Gora, Licealna 9, 65-417 Zielona Gora, Poland, a.kaczmarek@ibem.uz.zgora.pl
autor
- Department of Mechanical Engineering, University of Zielona Gora, Licealna 9, 65-417 Zielona Gora, Poland
Bibliografia
- [1] T. Utesch, G. Dominelli, M.A. Mroginski, Molecular Dynamics Simulations of the Adsorption of Bone Morphogenic Protein-2 on Surface with Medical Relevance, Langmuir 27 (2011) 13144-13153.
- [2] T.V. Nguyen, P.N. Sambrook, J.A. Eisman, Bone loss, physical activity, and weight change in eldery women: the Dubbo Osteoporosis Epidemiology Study, Journal of Bone and Mineral Research 13 (1998) 1458-1467.
- [3] Polish Society of Orthopedics and Traumatology, Report: Osteoporosis-silent epidemic in Poland, 10- 02-2015 (in Polish).
- [4] P. Urena, M. Fruby, A. Ferreira, K.S. Ang, M.C. Vernejoul, Plasna Total Versus Bone Alkaline Phosphatase as Marker of Bone Turnover in Hemodialysis Patients, Journal of American Society of Nephrology 7 (1996) 506-512.
- [5] F. Sarac, F. Saygth, Causes of high bone alkaline phosphatase, Biotechnology & Biotechnological Equipment 21 (2007) 194-197.
- [6] S. Sardiwal, P. Magnusson, D.J.A. Goldsmith, E.J. Lamb, Bone Alkaline Phosphatase in CKD Mineral Bone Disorder, American Journal of Kidney Diseases 62 (2013) 810-822.
- [7] E. River, F. Chopin, G. Coiffeier, T.F. Brentano, B. Bouvard, P. Gamero, B. Cortet, Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value in osteoporosis, Joint Bone Spine 79 (2012) 20-25.
- [8] Y.L. Hu, M.S. Huang, Ch.J. Yang, J.Y. Hung, L.Y. Wu, P.L. Kuo, Lung Tumor- associated Osteoblast-derived Bone Morphogenetic Protein-2 Increased Epithelial-to-Mesenchymal Transition of Cancer Runx2/Snail Signaling Pathways, The Journal of Biological Chemistry 286 (2011) 37335-37346.
- [9] L.D. Hover, C.D. Young, N.E. Bhola, A.J. Wilson, D. Khabele, C.C. Hong, H.L. Moses, P. Owens, Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth, Cancer Letters 368 (2015) 79-87.
- [10] F.G. Draenert, A.L. Nonnenmacher, P.W. Kammerer, J. Goldschmitt, W. Wagner, BMP-2 and bFGF release and in vitro effect on human osteoblast after absor ption to the bone grafts and biomaterials, Clinical Oral Implants Research 24 (2013) 750-757.
- [11] E. Mornet, E. Stura, A.S. Lia-Baldini, T.S. Stigbrand, A. Merez, M.H. Le Dus, Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization, The Journal of Biological Chemistry 276 (2001) 31171-31178.
- [12] D.J. Jaekel, K.L. Ong, E.C. Lau, H.N. Watson, S.M. Kurtz, Epidemiology of Total Hip and Knee Arthroplasty Infection, in: B.D. Springer, J. Parvizi (ed.) Peroprosthetic joint infection of the hip and knee, Springer, 2013.
- [13] K.J. Bozic, S.M. Kurtz, E. Lau, K. Ong, T.P. Vail, D.J. Berry, The epidemiology of revision total hip arthroplasty in the United States, The Journal of Bone & Joint Surgery. American vol. 91 (2009) 128-133.
- [14] K.J. Bozic, S.M. Kurtz, E. Lau, K. Ong, V. Chin, T.P. Vail, H.E. Rubash, D.J. Berry, The epidemiology of total knee arthroplasty in the United States, Clinical Orthopaedics and Related Research 468 (2010) 45-51.
- [15] S. Minagar, J. Wang, C.C. Berndt, E.P. Ivanowa, C. Wen, Cell response of anodized nanotubes on titanium and titanium alloys, Journal of Biomedical Materials Research A 101A (2013) 2726-2739.
- [16] Y.T. Sul, C. Johansson, E. Byon, T. Albrektsson, The bone response of oxidized bioactive and non-bioactive titanium implants, Biomaterials 26 (2005) 6720-6730.
- [17] K. Kim, B.A. Lee, X.H. Piao, H.J. Chung, Y.J. Kim, Surface characteristics and bioactivity of an anodized titanium surface, Journal of Periodontal Implant Science 43 (2013) 198-205.
- [18] J.M. Macak, H. Tsuhiya, L. Taveira, A. Ghicov, P. Schmuki, Self-organized nanotubular oxide layers on Ti6Al7Nb and Ti6Al4V formed by anodizing in NH4F solutions, Journal of Biomedical Materials Research Part A 75A (2005) 928-933.
- [19] R.A. Gittens, L. Scheideler, F. Rupp, S.L. Hyzy, J. Geis-Gerstorfer, Z. Schwartz, B. Bayan, A review on the wettability of dental implant surfaces II: Biological and clinical aspect, Acta Biomaterialia 10 (2014) 2907-2918.
- [20] E. Krasicka-Cydzik, K. Bialas-Heltowski, I. Glazowska, T. Klekiel, A. Kaczmarek, Effect of fluorides on bioactivity of titania nanotubes in SBF solution - EIS studies, Archives of Materials Science and Engineering 51 (2011) 33-39.
- [21] M.A. Alfarsi, S.M. Hamlet, S. Ivanowski, Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response, Journal of Biomedical Materials Research A 102A (2014) 60-67.
- [22] F. Schwarz, I. Mihatovic, V. Golubovic, S. Eick, T. Igihaut, J. Becker, Experim ental peri-implant mucosits at different implant surfaces, Journal of Clinical Peridontology 41 (2014) 513-520.
- [23] P. Chennell, E. Feschet-Chassot, T. Devers, K.O Awitor, S. Descamps, V. Sautou, In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections, International Journal of Pharmaceutics 455 (2013) 298-305.
- [24] S. Zhong, R. Luo, X. Wang, L. Tang, J. Wu, J. Wang, R. Huang, H. Sun, N. Huang, Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell, Colloids and Surface B: Biointerfaces 116 (2014) 553-560.
- [25] Y.T. Sul, D.H. Kwon, B.S. Kang, S.J. Oh, C. Johansson, Experimental evidence for interfacial biochemical bonding in osteointegrated titanium implants, Clinical Oral Implant Research 24 (2011) 8-19.
- [26] K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin, Improved bone-forming functionality on diameter-controlled TiO2 nanotubular surface, Acta Biomaterialia 5 (2009) 3215-3223.
- [27] J. Lu, H. Li, D. Cui, Y. Zhang, S. Liu, Enhanced enzymatic reactivity for electrochemically drives drug metabolism by confining cytohrome P450 Enzyme in TiO2 nanotube Arrays, Analytical Chemistry 86 (2014) 8003-8009.
- [28] Y. Wang, C. Wen, P. Hodgson, Y. Li, Biocompati- bility of TiO2 nanotubes with different topographies, Journal of Biomedical Materials Research A 102 A (2014) 743-751.
- [29] C.A. Grimes, G.K. Mor, TiO2 Nanotubes: Synthesis, Properties and Applications, Springer, USA, 2009.
- [30] A.V. Grigorieva, A.B. Tarasov, E.A. Goodilin, S.M. Badalyan, M.N. Rumyantseva, A.M. Gaskov, A. Birkner, Y.D. Tretyakov, Sensor properties of vanadium oxide nanotubes, Mendel Communications 18 (2008) 6-7.
- [31] S. Bauer, K. von den Mark, J.C. Park, P. Schmuki, Engineering biocompatible implant surfaces Part I: Materials and surfaces, Progress in Materials Science 58 (2013) 261-326.
- [32] A. Kaczmarek, T. Klekiel, E. Krasicka-Cydzik, Fluoride concentration effect on the anodic growth of self-aligned oxide nanotube array on Ti6Al7Nb Alloy, Surface and Interface Analysis 42 (2010) 510-514.
- [33] E. Krasicka-Cydzik, A. Kaczmarek, I. Glazowska, K. Bialas-Heltowski, Scan rate and fluoride concentration effect on the anodic growth of selfaligned titanium dioxide nanotubes in phosphates, ECS Transactions 50 (2013) 263-270.
- [34] E. Krasicka-Cydzik, K. Arkusz, A. Kaczmarek, A mathematic model for selection of formation parameters of TiO2 nanotubes by anodizing, Engineering of Biomaterials 114 (2012) 34-40.
- [35] A. Kaczmarek-Pawelska, E. Krasicka-Cydzik, Morphological and Chemical Relationships in nanotubes formed by anodizing of Ti6Al4V alloy, Advances in Materials Science 14 (2014) 12-20.
- [36] P. Urena, M. Fruby, A. Ferreira, K.S. Ang, M.C. Vernejoul, Plasma Total Versus Bone Alkaline Phosphatase as Markers of Bone Turnover in Hemodialysis Patients, Journal of American Society of Nephrology 7 (1996) 506-512.
- [37] J.B. Albilia, H.C. Tenenbaum, C.M.L. Clokie, D.R. Walt, G.I. Baker, D.J. Psutka, D. Backstein, S.A.F. Peel, Serum levels of BMP-2,4,7 and AHSG in patients with degenerative joint disease requiring total arthroplasty of the hip and temporomandibular joints, Journal of Orthopaedic Research 31 (2013) 44-52.
- [38] C. Halling Kinder, S. Narisawa, J.L. Millán, P. Magnusson, Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms, Bone 45 (2009) 987-993.
- [39] A. Baoteng, A. Brajter-Toth, Nanomolar detection of p-nitrophenol via in situ generation of p-aminophenol at nanostructured microelectrodes, Analyst 137 (2012) 4531-4538.
- [40] S.H. Chan, Y.H. Lin, Ch.Y. Chu, Ch.M. Cheng, G.T. Chen, Y.Ch. Lu, S.Y.S. Thomas, Device and method for measuring prothrombin time and hematocrit by analyzing change in reactance in a sample. Patent no. US 20110303556.
- [41] L. Mierelles, A. Arvidsson, T. Albrektsson, A. Wennerberg, Increased bone formation to unstable nano rough titanium implants, Clinical Oral Implants Research 18 (2007) 326-332.
- [42] Y.Li, Q. Fu, Y. Qi, M. Shen, Q. Niu, K. Hu, L. Kong, Effect of a hierarchical hydrid micro/nanorough strontium-loaded surface on osteointegration In osteoporosis, RSC Advances 65 (2015) 52296-52306.
- [43] Z. Lewandowska, P. Piszczek, A. Radtke, T. Jedrzejewski, W. Kozak, B. Sadowska, Evaluation of the impast of titania nanotube covers morphology and crystal chase on their biological properties, Journal of Material Science: Materials in Medicine 26 (2015) 163-175.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4bb92884-3918-4b38-b5c1-ff4c593d72e0