Czasopismo
2011
|
Vol. 44, nr 2
|
115--139
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose Investigate the structure and properties of sintered tool materials, including cemented carbides, cermets and oxide ceramics deposited with single-layer and gradient coatings (Ti,Al)N and Ti(C,N), and to determine the dependence between the substrate type, coating material or linear variation of chemical composition and the structure and properties of the obtained tool material. Design/methodology/approach: Analysis of the structure (SEM, TEM), analysis of the mechanical and functional properties: surface roughness, microhardness tests, scratch tests, cutting tests. The Ti(C,N) and (Ti,Al)N gradient coating was investigated by XPS and AES method. X-ray qualitative phase analysis and the grazing incidence X-ray diffraction method (GIXRD) was employed to collect the detailed information about phase composition of investigated material’s surface layer. Computer simulation of stresses was carried out in ANSYS environment, using the FEM method and the experimental values of stresses were determined basing on the X-ray diffraction patterns. Findings Results of the investigation the influence of PVD coatings structure (single-layer or gradient) and kind on properties of coated tool materials. Coatings are characterized by dense, compact structure. The coatings were deposited uniformly onto the investigated substrate materials and show a characteristic columnar, fine-graded structure. The coatings deposited onto the investigated substrates are characterised by good adhesion and causes increasing of wear resistance. Gradient coatings are characterized by a linear change of chemical composition in the direction from the substrate to the coating surface. A more advantageous distribution of stresses in gradient coatings than in respective single-layer coatings yields better mechanical properties, and, in particular, the distribution of stresses on the coating surface has the influence on microhardness, and the distribution of stresses in the contact area between the coating and substrate has the influence on the adhesion of coatings. Practical implications: Deposition of hard, thin, gradient coatings on materials surface by PVD method features one of the most intensely developed directions of improvement of the working properties of materials. Originality/value: The grazing incidence X-ray diffraction method (GIXRD) and using the XPS and AES method in the investigated coatings were used to describe the gradient character of the coatings. The computer simulation is based on the finite element method, which allows to better understand the interdependence between parameters of process and choosing optimal solution.
Słowa kluczowe
Rocznik
Tom
Strony
115--139
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] M. Antonov, I. Hussainova, F. Sergejev, P. Kulu, A. Gregor, Assessment of gradient and nanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions, Wear 267 (2009) 898-906.
- [2] M. Arndt, T. Kacsich, Performance of new AlTiN coatings in dry and high speed cutting, Surface and Coatings Technology 163-164 (2003) 674-680.
- [3] M.A. Baker, S.J. Greaves, E. Wendler, V. Fox, A comparison of in situ polishing and ion beam sputtering as surface preparation methods for XPS analysis of PVD coatings, Thin Solid Films 377-378 (2000) 473-477.
- [4] M. Bizjak, A. Zalar, P. Panjan, B. Zorko, B. Pracek, Characterization of iron oxide layers using Auger electron spectroscopy, Applied Surface Science 253 (2007) 3977-3981.
- [5] Y.Y. Chang, D.Y. Wang, Characterization of nanocrystalline AlTiN coatings synthesized by a cathodic-arc deposition process, Surface and Coatings Technology 201 (2007) 6699-6701.
- [6] J. R.C.Jr, Chastain, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1995.
- [7] A.R. Chourasia, D.R. Chopra, Auger Electron Spectroscopy, Handbook of analytical chemistry, Prentice Hall, 1997.
- [8] M. Cłapa, D. Batory, Improving adhesion and wear resistance of carbon coatings using Ti:C gradient layers, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 415-418.
- [9] G.E. D’Errico, R. Calzavarini, B. Vicenzi, Influences of PVD coatings on cermet tool life in continuous and interrupted turning, Journal of Materials Processing Technology 78 (1998) 53-58.
- [10] A. Demirkiran, E. Avci, Evaluation of functionally gradient coatings produced by plasma-spray technique, Surface and Coatings Technology 116-119 (1999) 292-295.
- [11] L.A. Dobrzański, Structure and properties of high-speed steels with wear resistant cases or coatings, Journal of Materials Processing Technology 109 (2001) 44-51.
- [12] K. Dybowski, Ł. Kaczmarek, R. Pietrasik, J. Smolik, Ł. Kołodziejczyk, D. Batory, M. Gzik, M. Stegliński, Influence of chemical heat treatment on the mechanical properties of paper knife-edge die, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 422-427.
- [13] W. Kaczorowski, D. Batory, Carbon and titanium based layers for wood-based materials, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 187-190.
- [14] B.G. Wndler, W. Pawlak, Low friction and wear resistant coating systems on Ti6Al4V alloy, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 207-210.
- [15] M. Richert, A. Mazurkiewicz, J. Smolik, Chromium carbide coatings obtained by the hybrid PVD methods, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 145-152.
- [16] L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, L.W. Żukowska, Sintered tools materials with multicomponent PVD gradient coating, Journal of Achievements in Materials and Manufacturing Engineering 31 (2008) 15-22.
- [17] J. Grabarczyk, D. Batory, P Louda, P. Couvrat, I. Kotela, K. Bakowicz-Mitura, Carbon coatings for medical implants, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 107-111.
- [18] Z. Rożek, W. Kaczorowski, D. Lukas, P. Louda, S. Mitura, Potential applications of nanofiber textile covered by carbon coatings, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 35-38.
- [19] R.M. Nowak, S. Jonas, S. Zimowski, K. Tkacz-Smiech, Amorphous carbon layers on polymeric substrates, Journal of Achievements in Materials and Manufacturing Engineering 25/1 (2007) 23-26.
- [20] B. Wendler, T. Moskalewicz, I. Progalskiy, W. Pawlak, M. Makówka, K. Włodarczyk, P. Nolbrzak, A. Czyrska-Filemonowicz, A. Rylski, Hard and superhard nanolaminate and nanocomposite coatings for machine elements based on Ti6Al4V alloy, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 455-462.
- [21] W. Pawlak, B. Wendler, Multilayer, hybrid PVD coatings on Ti6Al4V titanium alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 660-667.
- [22] D. Batory, A. Stanishevsky, W. Kaczorowski, The effect of deposition parameters on the properties of gradient a-C:H/Ti layers, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 381-386.
- [23] K. Włodarczyk, M. Makówka, P. Nolbrzak, B. Wendler, Low friction and wear resistant nanocomposite nc-MeC/a-C and nc-MeC/a-C:H coatimgs, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 364-360.
- [24] W. Kaczorowski, D. Batory, P. Niedzielski, Application of microwave/radio frequency and radio frequency/magnetron sputtering techniques in polyurethane surface modification, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 286-291.
- [25] W. Kwaśny, Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 125-192.
- [26] W. Grzesik, Z. Zalisz, S. Król, Tribological behaviour of TiAlN coated carbides in dry sliding tests, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 279-282.
- [27] G. Matula, Influence of binder composition on structure and properties of carbide alloyed composite manufactured with the PIM method, Journal of Achievements in Materials and Manufacturing Engineering 30/2 (2008) 193-196.
- [28] W. Kwaśny, A modification of the method for determination of the surface fractal dimension and multifractal analysis, Journal of Achievements in Materials and Manufacturing Engineering 33 (2009) 115-125.
- [29] L.A. Dobrzański, M. Staszuk, J. Konieczny, W. Kwaśny, M. Pawlyta, Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics, Archives of Materials Science and Engineering 38/1 (2009) 48-54.
- [30] L.A. Dobrzański, M. Staszuk, J. Konieczny, J. Lelątko, Structure of gradient coatings deposited by CAE-PVD techniques, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 55-58.
- [31] L.A. Dobrzański, L. Wosińska, K. Gołombek, J. Mikuła, Structure of multicomponent and gradient PVD coatings deposited on sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 99-102.
- [32] L.A. Dobrzański, L.W. Wosińska, J. Mikuła, K. Gołombek, T. Gawarecki, Investigation of hard gradient PVD (Ti,Al,Si)N coating, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 59-62.
- [33] L.A. Dobrzański, L.W. Wosińska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201(2008) 310-314.
- [34] L.A. Dobrzański, L.W. Wosińska, J. Mikuła, K. Gołombek, Multicomponent and gradient PVD coatings deposited on the sintered tool materials, Materials Science 3-4 (157-158) (2007) 627-630.
- [35] L.A. Dobrzański, L.W. Żukowska, Properties of the multicomponent and gradient PVD coatings, Archives of Materials Science and Engineering 28/10 (2007) 621-624.
- [36] L.A. Dobrzański, L.W. Żukowska, W. Kwaśny, J. Mikuła, K. Gołombek, Ti(C,N) and (Ti,Al)N hard wear resistant coatings, Journal of Achievements in Materials and Manufacturing Engineering 42/2 (2010) 93-103.
- [37] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, T. Gawarecki, Hard gradient (Ti,Al,Si)N coating deposited on composite tool materials, Archives of Materials Science and Engineering 36/2 (2009) 69-754.
- [38] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, P. Podstawski, Functional properties of the sintered tool materials with (Ti,Al)N coating, Journal of Achievements in Materials and Manufacturing Engineering 36/2 (2009) 134-141.
- [39] L.A. Dobrzański, L.W. Żukowska, J. Kubacki, K. Gołombek, J. Mikuła, XPS and AES analysis of PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 32 (2008) 99-102.
- [40] J. Gu, G. Barber, S. Tung, R.J. Gu, Tool life and wear mechanism of uncoated and coated milling inserts, Wear 225-229 (1999) 273-284.
- [41] Y.H. Guu, H. Hocheng, Improvement of fatigue life of electrical discharge machined AISI D2 tool steel by TiN coating, Materials Science and Engineering A 318 (2001) 155-162.
- [42] J. Kopać, Influence of cutting materials and coating on tool quality and tool life, Journal of Materials Processing Technology 78 (1998) 95-103.
- [43] R. Kosiba, J. Liday, G. Ecke, O. Ambacher, J. Breza, P. Vogrincic, Quantitative Auger electron spectroscopy of SiC, Vacuum 80 (2006) 990-995.
- [44] J.H. Lee, S.J. Lee, One-step-ahead prediction of flank wear using cutting force, International Journal of Machine Tools and Manufacture 39 (1999) 1747-1760.
- [45] W. Lengauer, K. Dreyer, Functionally graded hardmetals, Journal of Alloys and Compounds 338 (2002) 194-212.
- [46] Li Chen, S.Q. Wang, Yong Du, Jia Li, Microstructure and mechanical properties of gradient Ti(C, N) and TiN/Ti(C, N) multilayer PVD coatings, Materials Science and Engineering A 478 (2008) 336-339.
- [47] C.Y.H. Lim, S.C. Lim, K.S. Lee, Wear of TiC-coated carbide tools in dry turning, Wear 225-229 (1999) 354-367.
- [48] C.H. Lin, J.G. Duh, J.W. Yeh, Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter, Surface and Coatings Technology 201 (2007) 6304-6308.
- [49] T. Liu, C. Dong, S. Wu, K. Tang, J. Wang, J. Jia, TiN, TiN gradient and Ti/TiN multi-layer protective coatings on Uranium, Surface and Coating Technology 201 (2007) 6737-6741.
- [50] Y.H. Lu, Z.F. Zhou, P. Sit, Y.G. Shen, K.Y. Li, Haydn Chen, X-Ray photoelectron spectroscopy characterization of reactively sputtered Ti-B-N thin films, Surface & Coatings Technology 187 (2004) 98-105.
- [51] S.J. Skrzypek, W. Ratuszek, A. Bunsch, M. Witkowska, J. Kowalska, M. Goły, K. Chruściel, Crystallographic texture and anisotropy of electrolytic deposited copper coating analysis, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 264-268.
- [52] S. Carvalho, E. Ribeiro, L. Rebouta, C. Tavares, J.P. Mendonca, A. Caetano Monteiro, N.J.M. Carvalho, J.Th. M. De Hosson, A. Cavaleiro, Microstructure, mechanical properties and cutting performance of superhard (Ti,SiAl)N nanocomposite films grown by d.c. reactive magnetron sputtering, Surface and Coatings Technology 177-178 (2004) 459-468.
- [53] R. Manaila, A. Devenyi, D. Biro, L. David, P.B. Barna, A. Kovacs, Multilayer TiAlN coatings with composition gradient, Surface and Coatings Technology, 151-152 (2002) 21-25.
- [54] G. Matula, Study on steel matrix composites with (Ti,Al)N gradient PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 79-86.
- [55] P.H. Mayrhofer, Ch. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings, Progress in Materials Science 51 (2006) 1032-1114.
- [56] S. Mitura, A. Mitura, P. Niedzielski, P. Couvrat, Nanocrystalline Diamond Coatings, Chaos, Solitons& Fractals 10/12 (1999) 2165-2176.
- [57] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Funcionally Graded Materials: Design, Processing and Applications, Kulwer Academic Publishers, Boston-Dordrecht-London 1999.
- [58] S. PalDey, S.C. Deevi, Cathodic arc deposited FeAl coatings: properties and oxidation characteristics, Materials Science and Engineering A355 (2003) 208-215.
- [59] S. PalDey, S.C. Deevi, Properties of single layer and gradient (Ti,Al)N coatings, Materials Science and Engineering A361 (2003) 1-8.
- [60] S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Materials Science and Engineering A342 (2003) 59-79.
- [61] A. Perry, J.A. Sue, P.J. Martin, Practical measurement of the residual stress in coatings, Surface and coatings Technology 81 (1996)17-28.
- [62] X. Qiao, Y. Hou, Y. Wu, J. Chen, Study on functionally gradient coatings of Ti-Al-N, Surface and Coatings Technology 131 (2000) 462-464.
- [63] Catalogue, Sandvik-Coromant.
- [64] D. Rafaja, A. Poklad, V. Klemm, G. Schreiber, D. Heger, M. Sima, M. Dopita, Some consequences of the partial crystallographic coherence between nanocrystalline domains in Ti-Al-N and Ti-Al-Si-N coatings, Thin Solid Films 514 (2006) 240-249.
- [65] B. Navinsek, P. Panjan, I. Milosev, PVD coatings as an environmentally clean alternative to electroplating and electroless processes, Surface and Coatings Technology 116-119 (1999) 476-487.
- [66] A. Śliwa, J. Mikuła, K. Gołombek, L.A. Dobrzański, FEM modelling of internal stresses in PVD coated FGM, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 71-78.
- [67] V. Volvoda: Structure of thin films of titanium nitride, Journal of Alloys and Compounds 219 (1995) 83-87.
- [68] U. Welzel, J. Ligot, P. Lamparter, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, Applied Crystallography 38 (2005) 1-29.
- [69] I.Yu. Konyashin, PVD/CVD technology for coating cemented carbides, Surface and Coatings Technology 71 (1995) 277-283.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-012de01d-20a4-47bc-b02f-fa23db30e53c