Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 15, no. 3 | 721--734
Tytuł artykułu

Static analysis of functionally graded thin rectangular plates with various boundary supports

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present study deals with static analysis of functionally graded (FG) rectangular plates subjected to various possible boundary conditions within the framework of classical plate theory. Material properties of the FG plate are assumed to vary continuously in the thickness direction according to power-law form. The trial functions denoting the transverse deflection of the plate are expressed as simple algebraic polynomials. Uniformly distributed load (UDL) and hydrostatic pressure are considered to be the external mechanical loads. Rayleigh–Ritz method along with mechanical kinematic relations and non-dimensionalization technique are employed in the numerical modeling to obtain the system of linear equations for the pure bending. Here the main objective is to study the effect of aspect ratio and volume fraction of the constituents on numerical factors associated with centroidal deflection, bending moments and normal stresses. New results for these factors are presented after checking the convergence pattern and validation has been done with the available results in special cases.
Wydawca

Rocznik
Strony
721--734
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
  • Department of Mathematics, National Institute of Technology, Rourkela, Odisha 769008, India, snechak@gmail.com
Bibliografia
  • [1] S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd edition, McGraw-Hill, Singapore, 1959.
  • [2] C.M. Wang, J.N. Reddy, K.H. Lee, Shear Deformation of Beams and Plates: Relationship with Classical Solutions, Elsevier Science Ltd., Oxford, 2000.
  • [3] S. Chakraverty, Efficient method for finding deflection of circular and elliptic plates, IE(I) Journal-CV 77 (1996) 01–11.
  • [4] J.N. Reddy, C.M. Wang, S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plates, European Journal of Mechanics A/Solids 18 (1999) 185–199.
  • [5] H. Werner, A three-dimensional solution for rectangular plate bending free of transversal normal stresses, Communications in Numerical Methods in Engineering 15 (1999) 295–302.
  • [6] Z.Q. Cheng, R.C. Batra, Three-dimensional thermoelastic deformations of a functionally graded elliptic plate, Composites: Part B 31 (2000) 97–106.
  • [7] X.L. Huang, H.S. Shen, Nonlinear vibration and dynamic response of functionally graded plates in thermalenvironments, International Journal of Solids and Structures 41 (2001) 2403–2427.
  • [8] H.S. Shen, Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments, International Journal of Mechanical Sciences 44 (2002) 561–584.
  • [9] L.S. Ma, T.J. Wang, Nonlinear bending and post-buckling of functionally graded circular plate under mechanical and thermal loadings, International Journal of Solids and Structures 40 (2003) 3311–3330.
  • [10] J. Yang, H.S. Shen, Nonlinear analysis of functionally graded plates under transverse and in-plane loads, International Journal of Non-Linear Mechanics 38 (2003) 467–482.
  • [11] J. Yang, H.S. Shen, Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions, Composites: Part B 34 (2003) 103–115.
  • [12] L.S. Ma, T.J. Wang, Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory, International Journal of Solids and Structures 41 (2004) 85–101.
  • [13] M. Kashtalyan, Three-dimensional elasticity solution for bending of functionally graded rectangular plates, European Journal of Mechanics A/Solids 23 (2004) 853–864.
  • [14] S. Abrate, Free vibration, buckling, and static deflections of functionally graded plates, Composite Science and Technology 66 (2006) 2383–2394.
  • [15] F. Ramirez, P.R. Heyliger, E. Pan, Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach, Composites: Part B 37 (2006) 10–20.
  • [16] A.M. Zenkour, Generalized shear deformation theory for bending analysis of functionally graded plates, Applied Mathematical Modelling 30 (2006) 67–84.
  • [17] M. Bouazza, A. Tounsi, E.A. Adda-Bedia, A. Megueni, Thermoelastic stability analysis of functionally graded plates: an analytical approach, Computational Materials Science 49 (2010) 865–870.
  • [18] D.G. Zhang, Nonlinear bending analysis of FGM rectangular plates with various supported boundaries resting on two-parameter elastic foundations, Archives of Applied Mechanics 84 (2014) 1–20.
  • [19] T.K. Nguyen, K. Sab, G. Bonnet, First-order shear deformation plate models for functionally graded materials, Composite Structures 83 (2008) 25–36.
  • [20] S. Brischetto, R. Leetsch, E. Carrera, T. Wallmersperger, B. Kröplin, Thermo-mechanical bending of functionally graded plates, Journal of Thermal Stresses 31 (2008) 286–308.
  • [21] A.R. Saidi, A. Rasouli, S. Sahraee, Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory, Composite Structures 89 (2009) 110–119.
  • [22] S. Pradyumna, J.N. Bandyopadhyay, Dynamic instability of functionally graded shells using higher-order theory, Journal of Engineering Mechanics 136 (5) (2010) 551–561.
  • [23] M. Talha, B.N. Singh, Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Applied Mathematical Modelling 34 (2010) 3991–4011.
  • [24] G. Taj, A. Chakrabarti, Static and dynamic analysis of functionally graded skew plates, Journal of Engineering Mechanics 139 (7) (2013) 848–857.
  • [25] J. Yang, H.S. Shen, Non-linear analysis of functionally graded plates under transverse and in-plane loads, International Journal of Non-linear Mechanics 38 (2003) 467–482.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9fae085b-b99e-49cf-99f7-fe8d6b641480
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.