Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 15, no. 3 | 164--172
Tytuł artykułu

Preparation And Properties Of Bionanocomposite Films Reinforced With Nanocellulose Isolated From Moroccan Alfa Fibres

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanocellulose (NC) were extracted from the Moroccan Alfa plant (Stipa tenacissima L.) and characterised. These Alfa cellulosic nanoparticles were used as reinforcing phase to prepare bionanocomposite films using carboxymethyl cellulose as matrix. These films were obtained by the casting/evaporation method. The crystallinity of NC was analysed by X-ray diffraction, the dimension of NC by atomic force microscopy, molecular interactions due to incorporation of NC in carboxymethyl cellulose (CMC) matrix were supported by Fourier transforms infrared (FTIR) spectroscopy. The properties of the ensuing bionanocomposite films were investigated using tensile tests, water vapour permeability (WVP) study and thermogravimetric analysis. With the progress of purification treatment of cellulose, the crystallinity is improved compared to the untreated fibres; this can be explained by the disappearance of the amorphous areas in cellulose chain of the plant. Consequently, the tensile modulus and tensile strength of CMC film increased by 60 and 47%, respectively, in the bionanocomposite films with 10 wt% of NC, and decrease by 8.6% for WVP with the same content of NC. The NC obtained from the Moroccan Alfa fibres can be used as a reinforcing agent for the preparation of bionanocomposites, and they have a high potential for the development of completely biodegradable food packaging materials.
Wydawca

Rocznik
Strony
164--172
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Laboratoire de recherche sur les matériaux textiles, Ecole supérieure des industries de textile et de l’habillement, 20220 Casablanca, Morocco, benyoussif@esith.ac.ma
  • Laboratoire de Physique et Mécanique Textiles, Ecole Nationale Supérieure d’Ingénieurs Sud Alsace, 68093 Mulhouse, France
  • Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II-Casablanca B.P. 146, 20650, Morocco
  • Moroccan Foundation for Advanced Science Innovation and Research (MAScIR), Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100-Rabat, Morocco
  • Laboratoire de recherche sur les matériaux textiles, Ecole supérieure des industries de textile et de l’habillement, 20220 Casablanca, Morocco
autor
  • Laboratoire de Physique et Mécanique Textiles, Ecole Nationale Supérieure d’Ingénieurs Sud Alsace, 68093 Mulhouse, France
  • Laboratoire de recherche sur les matériaux textiles, Ecole supérieure des industries de textile et de l’habillement, 20220 Casablanca, Morocco
autor
  • Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II-Casablanca B.P. 146, 20650, Morocco, mzahouily@gmail.com
  • Moroccan Foundation for Advanced Science Innovation and Research (MAScIR), Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100-Rabat, Morocco
Bibliografia
  • [1] Khalil, A., Bhat, H. P. S., IreanaYusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87, 963-979.
  • [2] Khan, A., Huq, T., Khan, R. A., Riedl, B., Lacroix, M. (2014). Nanocellulose based composites and bioactive agents for food packaging. Critical Reviews in Food Science and Nutrition, 54, 163-174.
  • [3] Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38, 1653-1689.
  • [4] Sorrentino, A., Gorrasi, G., Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18, 84-95.
  • [5] Stevens, C., Verhe, R. (Ed.). (2004). Renewable bioresources – scope and modification for non-food applications. Wiley (New York).
  • [6] Thomas, S., Pothan, L. (Ed.). (2009). Cellulose fiber reinforced polymer composites. Old City Publishing (Philadelphia)
  • [7] Belgacem, M.N., Gandini, A. (Ed.). (2008). Monomers polymers and composites from renewable resources. Elsevier (Amsterdam).
  • [8] Ben Brahim, S., Ben Cheikh, R. (2007). Influence of fiber orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Composites Science and Technology, 67, 140-147.
  • [9] Nadji, H., Diouf, P. N., Benaboura, A., Bedard, Y., Riedl, B. (2009). Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). BioresourceTechnology, 100, 3585-3592.
  • [10] Paiva, M. C., Ammar, I., Campos, A. R., Cheikh, R. B., Cunha, A. M. (2007). Alfa fibers: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 67, 1132-1138.
  • [11] Marrakchi, Z.; Oueslati, H.; Belgacem, M. N.; Mhenni, F.; Mauret E. (2012). Biocomposites based on polycaprolactone reinforced with alfafiber mats. Composites: Part A, 43, 742-747.
  • [12] Nadji, H., Brochier Salon, M. C., Bruzzèse, C., Benaboura, A., Belgacem, M.N. (2006). Chemical composition and pulp properties of Alfa (Stipa tenacissima). Cellulose Chemistry and Technology, 40, 45-52.
  • [13] Shih, C. M., Shieh, Y. T., Twu, Y. K. (2009). Preparation and characterization of cellulose/chitosan blend films. Carbohydrate Polymers, 78, 169-174.
  • [14] Erdohan, Z. O., Turhan, K. N. (2005). Barrier and mechanical properties of methyl cellulose-whey protein films. Packaging Technology and Science, 18, 295-302.
  • [15] Bain, M. K., Bhowmik, M., Ghosh, S. N., Chattopadhyay, D. (2009). In situ fast gelling formulation of methyl cellulose for in vitro ophthalmic controlled delivery of ketorolac tromethamine. Journal of Applied Polymer Science, 113, 1241-1246.
  • [16] Filho, G. R., RosanaAssunc, M. N., Vieira, J. G., Meireles, C., Daniel, A., Cerqueira, D. A., Barud, H. S., Ribeiro, S. J. L., Messaddeq, Y. (2007). Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties. Polymer Degradation and Stability, 92, 205-210.
  • [17] Heinze, T., Liebert, T., Klüfers, P., Meister, F. (1999). Carboxymethylation of cellulose in unconventional media. Cellulose, 6 (2), 153-165.
  • [18] Chamsai, B., Sriamornsak, P. (2013). Novel disintegrating microcrystalline cellulose pellets with improved drug dissolution performance. Powder Technology, 233, 278-285.
  • [19] Kalita, R. D., Nath, Y., Ochubiojo, M. E., Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setariaglauca(L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces, 108, 85-89.
  • [20] Levis, S. R., Deasy, P. B. (2001). Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose. International Journal of Pharmaceutics, 230 (1-2), 25-33.
  • [21] Oyeniyi, Y. J., Itiola, O. A. (2012). The physicochemical characteristic of microcrystalline cellulose, derived from sawdust, agricultural waste products. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 197-200.
  • [22] Sanguansri, P., Augustin, M. A. (2006). Nanoscale materials development – A food industry perspective. Trends in Food Science & Technology, 17(10), 547-556.
  • [23] Podczeck, F., Al-Muti, E. (2010). The tensile strength of bilayered tablets made from different grades of microcrystalline cellulose. European Journal of Pharmaceutical Sciences, 41, 483-488.
  • [24] Hanna, M., Biby, G., Miladinove, V. (2001). Production of microcrystalline cellulose by reactive extrusion. US Patent 6,228, 213.
  • [25] Adel, A. M., Abd El-Wahab, H. Z., Ibrahim, A. A., Al-Shemy, M. T. (2010). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology, 101, 4446-4455.
  • [26] Janardhnan, S., Sain, M. M. (2006). Isolation of cellulose microfibrils – An enzymatic approach. BioResources, 1(2), 176-188.
  • [27] Zhang, Y., Liu, Y., Wang, X., Sun, Z., Ma, J., Wu, T., Xing, F., Gao J. (2014). Carbohydrate Polymers, 101, 392-400.
  • [28] Singh, V., Ahmad, S. (2012). Synthesis and characterization of carboxymethylcellulose-silver nanoparticle (AgNp)-silica hybrid for amylase immobilization. Cellulose, 19 (5), 1759-1769.
  • [29] Song, J., Birbach, N. L., Hinestroza, J. P. (2012). Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose, 19 (2), 411-424.
  • [30] Chang, P. R., Yu, J., Ma, X., Anderson, D. P. (2011). Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohydrate Polymers, 83 (2), 640-644.
  • [31] Choi, Y., Simonsen, J. (2006). Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. Journal of Nanoscience and Nanotechnology, 6 (3), 633-639.
  • [32] Zakharov, N. A., Ezhova, Z. A., Kalinnikov, V. T., Chalykh, A. E. (2005). Hydroxyapatite-carboxymethyl cellulose nanocomposite biomaterial. Inorganic Materials, 41 (5), 509-515.
  • [33] Shen, J., Song, Z., Qian, X., Yang, F. (2010). Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: Preparation and their use in papermaking. Carbohydrate Polymers, 81(3), 545-553.
  • [34] Luna-Martinez, J. F., Hernández-Uresti, D. B., Reyes-Melo, M. E., Guerrero-Salazar, C. A., González-González, V. A., Sepulveda-Guzman, S. (2011). Synthesis andoptical characterization of ZnS–sodium carboxymethyl cellulose nanocomposite films. Carbohydrate Polymers, 84 (1), 566-570.
  • [35] Basta, A. H., El-Saied, H. (2008). New approach for utilization of cellulose derivatives metal complexes in preparation of durable and permanent colored papers. Carbohydrate Polymers, 74 (2), 301-308.
  • [36] Segal, L., Creely, J. J., Martin, A. E., Conrad, C. M. (1959). An empirical methodfor estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786-794.
  • [37] El Achaby, M., Essamlali, Y., El Miri, N., Snik, A., Abdelouahdi, K., Fihri, A., Zahouily M., Solhy, A. (2014). Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bio-nanocomposites. J. Applied Polymer Science, 131, issue 22.
  • [38] Aila-Suárez, S., Palma-Rodríguez, H. M., Rodríguez-Hernández, A. I., Hernández-Uribe, J. P., Bello-Pérez, L. A., Vargas-Torres A. (2013). Characterization of films made with chayote tuber and potato starches blending with cellulose nanoparticles Carbohydrate polymers 98, 102-7.
  • [39] Sun, X. F., Xu, F., Sun, R. C., Fowler, P., Baird, M. S. (2005). Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340, 97-106.
  • [40] Sun, R. C., Sun, X. F., Liu, G. Q., Fowler, P., Tomkinson, J. (2002). Structural and physicochemical characterization of hemicelluloses isolated by alkaline peroxide from barley straw. Polymer International, 51 (2), 117-124.
  • [41] Xiao, B., Sun, X. F., Sun, R. C. (2001). Chemical structural thermal characterization of alkali-soluble hemicelluloses and lignins, and cellulose from rye and rice straws and maize stems. Polymer Degradation and Stability, 74, 307-319.
  • [42] Trache, D.; Donnot, A.; Khimeche, K.; Benelmir, R.; Brosse N. (2014). Physico-chemical properties and thermal stability of microcrystallinecellulose isolated from Alfa fibers Carbohydrate Polymers 104, 223–230.
  • [43] Silvério, H.A. et al. (2013). Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products, 44, 427–436.
  • [44] Lu, P., Hsieh, Y.-L. (2010). Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 82, 329–336.
  • [45] Abeer, M. A., El-Wahab, Z. H. A., Ibrahim, A. A., Al-Shemy, M. T. (2010). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology, 101, 4446-4455.
  • [46] Alemdar, A., &Sain, M. (2008b). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology,68, 557–565.
  • [47] Maafi, E. M., Malek, F., Tighzert, L., Dony, P. (2010). Synthesis of polyurethane and characterization of its composites based on alfa cellulose fibers. Journal of Polymer Environment, 18, 638-646.
  • [48] Kalita, R. D., Nath, Y., Ochubiojo, M. E., Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setariaglauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces, 108, 85-89.
  • [49] Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J. (2009). Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydrate Polymers, 76, 94-99.
  • [50] Maiti, S., Jayaramudu, J., Das, K., Reddy, S. M., Sadiku, R., Ray, S. S. (2013). Preparation and characterization of nanocellulose with new shape from different precursor. Carbohydrate Polymers, 98, 562-567.
  • [51] Kim, U. J., Eom, S. H., Wada, M. (2010). Thermal decomposition of native cellulose: Influence on crystallite size. Polymer Degradation and Stability, 95, 778-781.
  • [52] Poletto, M., Pistor, V., Zeni, M., Zattera, A. J. (2011). Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability, 96, 679-685.
  • [53] Khan, R. A., Salmieri, S., Dussault, D., Uribe-Calderon, J., Kamal, M. R., Safrany, A., Lacroix M. (2010). Journal of Agricultural and Food Chemistry, 58, 7878-7885.
  • [54] Roman, M., Winter, W. T. (2004). Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5, 1671-1677.
  • [55] Wang, N., Ding, E., Cheng, R. (2007). Thermal degradation behavior of spherical cellulose nanocrystals with sulphate groups. Polymer, 48, 3486-3493.
  • [56] De Azeredo, H. M. C. (2009). Nanocomposites for food packaging applications. Food Research International, 42, 1240-1253.
  • [57] Khana, R. A., Salmieria, S., Dussault, D., J., Uribe-Calderond, Kamal, M. R., Safrany, A., Lacroixa M. (2010). Production and Properties of Nanocellulose-Reinforced Methylcellulose-Based Biodegradable Films. J. Agric. Food Chem. 58, 7878-7885.
  • [58] Huqa, T., Salmieria, S., Khana, A., Khana, R. A., Le Tiena, C., Riedlb, B., Fraschinic, C., Bouchardc, J., Uribe-Calderond, J., Kamal, M. R., Lacroixa M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradablenanocomposite film. Carbohydrate Polymers 90, 1757-1763.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-020b2de7-4efc-4af0-8278-dff3db9f6fbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.