Czasopismo
2016
|
Vol. 16, no. 4
|
554--562
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the application of natural zeolite as a substitute of cement in concrete. It studies the mechanical and durability properties of concretes containing 10% of natural zeolite and superplasticizer, as well as 10% of natural zeolite, superplasticizer and an air-entraining agent in comparison to concretes without natural zeolite. The study shows that fresh concrete mixture containing zeolite due to its high surface area demands a higher dosage of superplasticizer to achieve the targeted slump flow. While concretes containing natural zeolite characterize a lower compressive strength until 90 days of hardening, the compressive strength exceeds the strength of the concretes without zeolite after 180 days. The results also reveal the considerable effectiveness of using a superplasticizer and an air-entraining agent in zeolite incorporating concretes on water penetration, drying shrinkage and freeze–thaw resistance of concretes.
Czasopismo
Rocznik
Tom
Strony
554--562
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Department of Civil and Environmental Engineering, Lviv Polytechnic National University, Ukraine
autor
- Department of Civil and Environmental Engineering, Lviv Polytechnic National University, Ukraine
autor
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Poland
autor
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Poland, w.franus@pollub.pl
Bibliografia
- [1] Y. Kocak, E. Tasci, U. Kaya, The effect of using natural zeolite on the properties and hydration characteristics of blended cements, Construction and Building Materials 47 (2013) 720–727.
- [2] Kh. Sobol, T. Markiv, V. Terlyha, W. Franus, Peculiarities of hydration processes of cements containing natural zeolite, Budownictwo i Architektura 14 (1) (2015) 105–113.
- [3] C. Colella, in: J. Cejka, H. van Bekkum, A. Corma, F. Schueth (Eds.), Introduction to Zeolite Science and Practice, Elsevier, Amsterdam, 2007 999–1035.
- [4] N. Feng, G. Peng, Applications of natural zeolite to construction and building materials in China, Construction and Building Materials 19 (2005) 579–584.
- [5] W. Franus, K. Dudek, Clay minerals and clinoptilolite from the Variegated Shales Formation in the Skole Unit, Polish Flysch Carpathians, Geologica Carpathica 50 (1999) 23–24.
- [6] M. Najimi, J. Sobhani, B. Ahmadi, M. Shekarchi, An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan, Construction and Building Materials 35 (2012) 1023–1033.
- [7] B. Uzal, L. Turanli, Blended cements containing high volume of natural zeolites: properties, hydration and paste microstructure, Cement and Concrete Composites 34 (2012) 101–109.
- [8] M. Sanytsky, Kh Sobol, T. Markiv, [Modified Composite Cements], Lviv Polytechnic National University Publishing House, Lviv, 2010 (in Ukranian).
- [9] D. Caputo, B. Liguori, C. Colella, Some advances in understanding the pozzolanic activity of zeolites: the effect of zeolite structure, Cement and Concrete Composites 30 (2008) 455–462.
- [10] S.Y.N. Chan, X. Ji, Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes, Cement and Concrete Composites 21 (1999) 293–300.
- [11] D. Jana, A new look to an old pozzolan: clinoptilolite – a promising pozzolan in concrete, in: Proceedings of the Twenty-Ninth Conference on Cement Microscopy, Quebec City, PQ, Canada, 2007.
- [12] T. Markiv, O. Huniak, Kh. Sobol, Optimization of concrete composition with addition of zeolitic tuff, Journal of Lviv Polytechnic National University. Theory and Practice of Building 781 (2014) 116–121.
- [13] M. Valipour, F. Pargar, M. Shekarchi, S. Khani, Comparing a natural pozzolan zeolite to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: a laboratory study, Construction and Building Materials 41 (2013) 879–888.
- [14] F. Sabet, N. Ali, M. Shekarchi, Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash, Construction and Building Materials 44 (2013) 175–184.
- [15] B. Ahmadi, M. Shekarchi, Use of natural zeolite as a supplementary cementitious material, Cement and Concrete Composites 32 (2010) 134–141.
- [16] PN-EN 196 Method of testing cement.
- [17] A. Bieganowski, G. Łagód, M. Ryżak, A. Montusiewicz, M. Chomczyńska, A. Sochan, Measurement of activated sludge particle diameters using laser diffraction method, Ecological Chemistry and Engineering S 19 (2012) 597–608.
- [18] A. Bieganowski, T. Chojecki, M. Ryżak, A. Sochan, K. Lamorski, Methodological aspects of fractal dimension estimation on the basis of particle size distribution, Vadose Zone Journal 12 (1) (2013) 1–9.
- [19] C. Polakowski, A. Sochan, A. Bieganowski, M. Ryżak, R. Földényi, J. Tóth, Influence of the sand particle shape on particle size distribution measured by laser diffraction method, International Agrophysics 28 (2014) 195–200.
- [20] PN-EN 1097 Tests for mechanical and physical properties of aggregates.
- [21] PN-EN 12390-2 Testing hardened concrete. Part 2: Making and curing specimens for strength tests.
- [22] PN-EN 12390-3 Testing hardened concrete. Part 3: Compressive strength of test specimens.
- [23] PN-EN 12390-8 Testing hardened concrete. Part 8: Depth of penetration of water under pressure.
- [24] PN-EN 206:2014 Concrete – specification, properties, production and compatibility.
- [25] S. Ghourchian, M. Wyrzykowski, P. Lura, M. Shekarchi, B. Ahmadi, An investigation on the use of zeolite aggregates for internal curing of concrete, Construction and Building Materials 40 (2013) 135–144.
- [26] Z. Sun, G.W. Scherer, Effect of air voids on salt scaling and internal freezing, Cement and Concrete Research 40 (2010) 260–270.
- [27] O. Coussy, P.J.M. Monteiro, Poroelastic model for concrete exposed to freezing temperatures, Cement and Concrete Research 38 (2008) 40–48.
- [28] E. Vejmelková, D. Koňáková, T. Kulovaná, M. Keppert, J. Žumár, P. Rovnaníková, Z. Keršner, M. Sedlmajer, R. Černŷ, Engineering properties of concrete containing natural zeolite as supplementary cementitious material: strength, toughness, durability, and hygrothermal performance, Cement and Concrete Composites 55 (2015) 259–267.
- [29] C. Bilim, Properties of cement mortars containing clinoptilolite as a supplementary cementitious material, Construction and Building Materials 25 (2011) 3175–3180.
- [30] Y. Kasai, K. Tobinai, E. Asakura, N. Feng, Comparative study of natural zeolites and other inorganic admixtures in terms of characterization and properties of mortars, in: V.D. Malhotra (Ed.), Proceedings of the 9th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Istanbul, Farmington Hills, 1992.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b793fc0c-adec-4ad6-9440-36c74026e5bd