Warianty tytułu
Języki publikacji
Abstrakty
Outline of the modified Mindlin theory is presented in which the Mindlin mathematical model with three differential equations of motion for total deflection and rotations is decomposed into a single equation for pure bending vibrations with transverse shear and rotary inertia effects and two differential equations for in-plane shear vibrations. The governing equations are transformed from orthogonal to polar coordinate system for the purpose of circular plate vibration analysis. The fourth order differential equation of flexural vibrations is split further into two second order equations of Bessel type. Also, the in-plane shear differential equations are transformed to Bessel equation by introducing displacement potential functions. The exact values of natural frequencies are listed and compared with FEM results.
Czasopismo
Rocznik
Tom
Strony
389--409
Opis fizyczny
Bibliogr. 41 poz., rys. kolor
Twórcy
autor
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia, ivo.senjanovic@fsb.hr
autor
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
autor
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
autor
- Pusan National University, San 30 Jangjeon-dong Guemjeong-gu, Busan, 609-735, Korea
Bibliografia
- 1. R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, Journal of Applied Mechanics, 18, 1, 31–38, 1951.
- 2. R.D. Mindlin, A. Schacknow, H. Deresiewicz, Flexural vibrations of rectangular plates, Journal of Applied Mechanics, 23, 3, 430–436, 1956.
- 3. R. Szilard, Theories and Application of Plate Analysis, Wiley, 2004.
- 4. J.N. Reddy, A simple higher-order theory for laminated composite plates, ASME Journal of Applied Mechanics, 51, 745–752, 1984.
- 5. A.Y.T. Leung, An unconstrained third order plate theory, Computers and Structures, 40, 4, 871–875, 1991.
- 6. N.F. Hanna, A.W. Leissa, A higher order shear deformation theory for the vibration of thick plates, Journal of Sound and Vibration, 170, 545–555, 1994,.
- 7. K.M. Liew, Y. Xiang, S. Kitipornchai, Research on thick plate vibration: a literature survey, Journal of Sound and Vibration, 180, 163–176, 1995.
- 8. J. So, A.W. Leissa, Three-dimensional vibrations of thick circular and annular plates, Journal of Sound and Vibration, 209, 15–41, 1998.
- 9. K.M. Liew, B. Yang, Elasticity solution for forced vibrations of annular plates from three-dimensional analysis, International Journal of Solids and Structures, 37, 7689–7702, 2000.
- 10. J.H. Kang, Three-dimensional vibration analysis of thick, circular and annular plater with nonlinear thickness variation, Computers and Structures, 81, 1663–1675, 2003.
- 11. D. Zhou, F.T.K. Au, Y.K. Cheung, S.H. Lo, Three-dimensional vibration analysis of cicular and annular plates via the Chebyshev–Ritz method, International Journal of Solids and Structures, 40, 3089–3105, 2003.
- 12. K.M. Liew, J.B. Han, Z.M. Xiao, Vibration analysis of circular Mindlin plates using the differential quadrature method, Journal of Sound and Vibration, 205, 5, 617–630, 1997.
- 13. U.S. Gupta, R. Lal, S.K. Jain, Effect of elastic foundation on axisymmetric vibrations of polar orthotropic circular plates of variable thickness, Journal of Sound and Vibrations, 139, 503–513, 1990.
- 14. P.A.A. Laura, R.H. Gutierrez, Analysis of vibrating circular plates of non-uniform thickness by the method of differential quadrature, Ocean Engineering, 22, 97–100, 1995.
- 15. Y. Xiang, L. Zhang, Free vibration analysis of stepped circular Mindlin plates, Journal of Sound and Vibration, 280, 633–655 2005.
- 16. H. Rokni Damavandi Taher, M. Omidi, A.A. Zadpoor, A.A. Nikooyan, Free vibration of circular and annular plates with variable thickness and different combination of boundary conditions, Journal of Sound and Vibration, 296, 1084–1092, 2006.
- 17. U.S. Gupta, R. Lal, S. Sharma, Vibration of non-homogenous circular Mindlin plater with variable thickness, Journal of Sound and Vibration, 302, 1–17, 2007.
- 18. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, 5th ed., Butterworth-Heinemann, Oxford, 2000.
- 19. I. Senjanović, N. Vladimir, M. Tomić, An advanced theory of moderately thick plate vibrations, Journal of Sound and Vibration, 332, 1868–1880, 2013.
- 20. I. Senjanović, M. Tomić, N. Vladimir, D.S. Cho, Analytical solution for free vibrations of a moderately thick rectangular plate, Hindawi Publishing Corporation, Mathematical Problems in Engineering, Volume 2013, Article ID 207460, 13 pp.
- 21. I. Senjanović, N. Vladimir, N. Hadžić, Modified Mindlin plate theory and shear locking-free finite element formulation, Mechanics Research Communications, 55, 95–104, 2014.
- 22. J.N. Reddy, R.A. Arciniega, Shear deformation plate and shell theories: from Stavsky to present, Mech. Adv. Mater. Struct., 11, 6, 535–582, 2004.
- 23. E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plater and shells, Archives of Computational Methods in Engineering, 9, 2, 87–140, 2002.
- 24. E. Carrera, A. Ciuffreda, A unified formulation to assess theories for multilayered plates for various bending problems, Computers and Structures, 69, 271–293, 2005.
- 25. L. Demasi, ∞6 mixed plate theories based on the generalized unified formulation, part I: governing equations, Composite Structures, 87, 1, 1–11, 2009.
- 26. L. Demasi, ∞6 mixed plate theories based on the generalized unified formulation, part II: Layerwise theories, Composite Structures, 87, 1, 12–22, 2008.
- 27. H.M. Mourad, T.O. Williams, F.L. Addessio, Finite element analysis of inelastic laminated plates using a global-local formulation with delamination, Comput. Methods Appl. Mech. Engrg., 198, 542–554, 2008.
- 28. D. Versino, H.M. Mourad, T.O. Williams, A global-local discontinous Galerkin Shell finite element for small-deformation analysis of multilayered composites, Comput. Methods Appl. Mech. Engrg., 271, 269–295, 2014.
- 29. Y.F. Xing, B. Liu, Exact solutions for the free in-plane vibrations of rectangular plates, International Journal of Mechanical Sciences, 51, 246–255, 2009.
- 30. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company, 1959.
- 31. J.D. Achenbach, Wave Propagation in Elastic Solid, North-Holland Publishing, Amsterdam, 1973.
- 32. J.F. Doyle, Wave Propagation in Structures, 2nd ed., Springer, New York, 1997.
- 33. C.I. Park, Frequency equation for the in-plane vibration of clamped circular plate, Journal of Sound and Vibration, 313, 325–333, 2008.
- 34. MSC, MSC.NASTRAN, Installation and operations guide, MSC Software, 2005.
- 35. O.C. Zienkiewicz, R.L. Taylor, J.M. To, Reduced integration technique in general analysis of plates and shells, Int. J. Num. Meth. Eng., 3, 275–290, 1971.
- 36. T.J.R. Hughes, R.L. Taylor, W. Kanoknuklchai, Simple and efficient element for plate bending, Int. J. Num. Meth. Eng., 11, 1529–1543, 1977.
- 37. S.W. Lee, X. Wong, Mixed formulation finite elements for Mindlin theory plate bending, Int. J. Num. Meth. Eng., 18, 1297–1311, 1982.
- 38. C. Lovadina, Analysis of a mixed finite element method for the Reissner–Mindlin plate problems, Comput. Meth. in Applied Mech. and Eng., 163, 71–85, 1998.
- 39. T.J.R. Hudges, T. Tezduyar, Finite element based upon Mindlin plate theory with particular reference to the four-node isoparametric element, Journal of Applied Mechanics, 48, 587–596, 1981.
- 40. K. Bletzinger, M. Bischoff, E. Ramm, A unified approach for shear-locking-free triangular and rectangular shell finite elelement, Comput. Struct., 75, 321–334, 2000.
- 41. S.H. Hashemi, M. Arsanjani, Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plate, International Journal of Solids and Structures, 42, 819–853, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5cd065a4-1f73-47c0-ae12-98ed4f82a5e3