Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 49, no. 2 | 85--109
Tytuł artykułu

On background driving distribution functions (BDDF) for some selfdecomposable variables

Treść / Zawartość
Warianty tytułu
PL
Przykłady rozkładów kierujących dla niektórych samorozkładalnych rodzin zmiennych losowych
Języki publikacji
EN
Abstrakty
EN
Many classical variables (statistics) are selfdecomposable. They admit the random integral representations via Levy processes. In this note are given formulas for their background driving distribution functions (BDDF). This may be used for a simulation of those variables. Among the examples discussed are: gamma variables, hyperbolic characteristic functions, Student t-distributions, stochastic area under planar Brownian motions, inverse Gaussian variable, logistic distributions, non-central chi-square, Bessel densities and Fisher z-distributions. Found representations might be of use in statistical applications.
PL
Wiele klasycznych modeli probabilistycznych opiera sie o zmienne losowe samorozkładalne. Maja one losowe reprezentacje całkowe oparte o procesy Lévy’ego. W tej notatce podano wzory dla ich kierujących (generujących) dystrybuant. Takich reprezentacji można używać do symulacji tych zmiennych. Wśród omawianych przykładów są: rozkłady t-Studenta, pole stochastyczne pod planarnymi ruchami Browna, odwrotny rozkład Gaussa, rozkłady logistyczne, niecentralny rozkład chi-kwadrat, rozkład Bessela i rozkłady statystyk Z-Fishera. Podane reprezentację mogą być przydatne w statystyce.
Wydawca

Rocznik
Strony
85--109
Opis fizyczny
Bibliogr. 33 poz., tab.
Twórcy
Bibliografia
  • [1] P. Biane and M. Yor. Variations sur une formule de Paul Lévy. Ann. Inst. H. Poincaré Probab. Statist., 23(2, suppl.):359–377, 1987. ISSN 0246-0203. URL http://www.numdam.org/item?id=AIHPB_1987__23_2_359_0. Cited on p. 96.
  • [2] R. C. Bradley and Z. J. Jurek. The strong mixing and the selfdecomposability properties. Statist. Probab. Lett., 84:67–71, 2014. ISSN 0167-7152. doi: 10.1016/j.spl.2013.09.015. Cited on p. 86.
  • [3] P. Carr, H. Geman, D. B. Madan, and M. Yor. The fine structure of asset returns: an empirical investigation. J. Business, 75(2):305–332, 2002. doi: 10.1086/338705. Cited on p. 85.
  • [4] P. Carr, H. Geman, D. B. Madan, and M. Yor. Selfdecomposability and option pricing. Math. Finance, 17(1):31–57, 2007. ISSN 0960-1627. doi: 10.1111/j.1467-9965.2007.00293.x. Cited on p. 85.
  • [5] A. Czyżewska-Jankowska and Z. J. Jurek. Factorization property of generalized s-selfdecomposable measures and class LF distributions. Teor. Veroyatn. Primen., 55(4):812–819, 2010. ISSN 0040-361X. doi: 10.1137/S0040585X97985169. Cited on p. 87.
  • [6] B. Duplantier. Areas of planar Brownian curves. J. Phys. A, 22(15):3033–3048, 1989. ISSN 0305-4470. URL http://stacks.iop.org/0305-4470/22/3033. Cited on p. 96.
  • [7] W. Feller. An introduction to probability theory and its applications. Vol. II. John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154. Cited on pp. 86, 101, 102, and 103.
  • [8] R. K. Getoor. The Brownian escape process. Ann. Probab., 7(5):864–867, 1979. ISSN 0091-1798. doi: 10.1214/aop/1176994945. Cited on p.91.
  • [9] B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random variables. Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. MR 0062975. Cited on p. 86.
  • [10] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Academic Press, Inc., Boston, MA, fifth edition, 1994. ISBN 0-12-294755-X. Translation edited and with a preface by Alan Jeffrey. MR1243179. Cited on pp. 90, 92, and 103.
  • [11] C. Halgreen. Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrsch. Verw. Gebiete, 47(1):13–17, 1979. ISSN 0044-3719. doi: 10.1007/BF00533246. MR 521527. Cited on p. 98.
  • [12] B. Hosseini. Two Metropolis-Hastings algorithms for posterior measures with non-Gaussian priors in infinite dimensions. SIAM/ASA J. Uncertain. Quantif., 7(4):1185–1223, 2019. doi: 10.1137/18M1183017. Cited on p. 85.
  • [13] A. M. Iksanov, Z. J. Jurek, and B. M. Schreiber. A new factorization property of the selfdecomposable probability measures. Ann. Probab., 32(2):1356–1369, 2004. ISSN 0091-1798. doi: 10.1214/009117904000000225. Cited on pp. 87, 96, and 100.
  • [14] Z. Jurek and K. Kepcznski. Graphs of the background driving distributions (BDDF) for some selfdecomposable variables. work in progres, 2021. Cited on p. 86.
  • [15] Z. J. Jurek. Relations between the s-self-decomposable and selfdecomposable measures. Ann. Probab., 13(2):592–608, 1985. ISSN 0091-1798. doi: 10.1214/aop/1176993012. Cited on p. 87.
  • [16] Z. J. Jurek. Series of independent exponential random variables. In Probability theory and mathematical statistics (Tokyo, 1995), pages 174–182. World Sci. Publ., River Edge, NJ, 1996. ISBN 9810224265. Cited on pp. 91 and 92.
  • [17] Z. J. Jurek. Selfdecomposability: an exception or a rule? Ann. Univ. Mariae Curie-Skłodowska Sect. A, 51(1):93–107, 1997. ISSN 0365-1029. Cited on pp. 88, 89, and 102.
  • [18] Z. J. Jurek. Remarks on the selfdecomposability and new examples. Demonstratio Math., 34(2):241–250, 2001. ISSN 0420-1213. MR 1833180. Cited on pp. 87, 90, 93, and 95.
  • [19] Z. J. Jurek. Generalized Lévy stochastic areas and selfdecomposability. Statist. Probab. Lett., 64(2):213–222, 2003. ISSN 0167-7152. doi: 10.1016/S0167-7152(03)00153-6. MR 2000018. Cited on pp. 94 and 96.
  • [20] Z. J. Jurek. Background driving distribution functions and series representation for log-gamma selfdecomposable random variables. Teor. Veroyatnost. i Primenen., 67(1):134–149, 2022. doi: 10.4213/tvp5422. arXiv:1904.04160v1. Cited on pp. 87 and 88.
  • [21] Z. J. Jurek and J. D. Mason. Operator-limit distributions in probability theory. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1993. ISBN 0-471-58595-5. A Wiley-Interscience Publication. MR 1243181. Cited on p. 102.
  • [22] Z. J. Jurek and W. Vervaat. An integral representation for selfdecomposable Banach space valued random variables. Z. Wahrsch. Verw. Gebiete, 62(2):247–262, 1983. ISSN 0044-3719. doi: 10.1007/BF00538800. MR 688989. Cited on pp. 86 and 95.
  • [23] P. Lévy. Théorie de l’addition des variables aléatoires. Gauthier-Villars, Paris, 1937. Zbl 63.0490.04. Cited on p. 85.
  • [24] P. Lévy. Wiener’s random function, and other Laplacian random functions. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pages 171–187. University of California Press, Berkeley and Los Angeles, Calif., 1951. MR 0044774. Cited on p. 95.
  • [25] M. Loève. Probability theory. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, third edition, 1963. MR 0203748. Cited on p. 86.
  • [26] Hinqin, Aleksandr Kovlevic. Predelnye zakony dli summ nezavisimyh sluqannyh veliqin. ONTI, Moskau, Leningrad, 1938. A. Ja. Chinčin, Khinchin, A. Ya.(1938) Grenzgesetz für Summen von unabhängigen Zufallsgrößen. (in Russian); Zbl 64.1239.06. Cited on p. 85.
  • [27] M. Trabs. Calibration of self-decomposable Lévy models. Bernoulli, 20 (1):109–140, 2014. doi: 10.3150/12-BEJ478. Cited on p. 85.
  • [28] K. Urbanik. Functionals on transient stochastic processes with independent increments. Studia Math., 103(3):299–315, 1992. ISSN 0039-3223. doi: 10.4064/sm-103-3-299-315. Cited on p. 98.
  • [29] N. G. Ushakov. Selected topics in characteristic functions. Modern Probability and Statistics. VSP, Utrecht, 1999. ISBN 90-6764-307-6. doi: 10.1515/9783110935981. MR 1745554. Cited on pp. 101, 103, and 105.
  • [30] M. L. Wenocur. Brownian motion with quadratic killing and some implications. J. Appl. Probab., 23(4):893–903, 1986. ISSN 0021-9002. doi: 10.1017/s0021900200118686. Cited on p. 99.
  • [31] M. Yor. On stochastic areas and averages of planar Brownian motion. J. Phys. A, 22(15):3049–3057, 1989. ISSN 0305-4470. URL http://stacks.iop.org/0305-4470/22/3049. Cited on p. 96.
  • [32] M. Yor. Some aspects of Brownian motion. Part I. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. ISBN 3-7643-2807-X. Some special functionals. Cited on pp. 95 and 99.
  • [33] M. Yor. Some aspects of Brownian motion. Part II. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1997. ISBN 3-7643-5717-7. doi: 10.1007/978-3-0348-8954-4. Cited on p. 93
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c6c3388b-bba8-4c62-a3d2-844593c836d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.