Warianty tytułu
Języki publikacji
Abstrakty
Bintuni Bay is considered one of the largest mangrove ecosystems in the world, and it has benefited a lot to local inhabitants and the surrounding ecosystem by underpinning and maintaining ecosystem balances. This study assesses various environmental factors that affect the flow of the Bintuni River and mangrove ecosystems as a result of potential degradation due to various anthropogenic activities and small-scale industries along the river. Several environmental parameters were collected, measured, and analyzed in the laboratory, while mangrove seedlings were measured and calculated at five different locations to obtain the importance value index (IVI). The results indicated slightly varied environmental parameters and concentrations at the five locations. However, there was no significant difference in the environmental parameters between the five different locations (p-value of 0.953 > 0.05, 95% of CI). Mangrove seedlings were distributed evenly along the five different locations which were indicated by the number of individuals (ind/ha). There was no significant correlation among these environmental parameters because of the low concentrations of chemical and biological compounds in the water. Moreover, mangroves can regenerate, grow, and exist even in extreme and unbalanced environmental niches.
Czasopismo
Rocznik
Tom
Strony
1--11
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Doctoral Student, Graduate School of Environmental Science, Universitas Papua. Jl. Gunung Salju, Manokwari 98314, West Papua, Indonesia
autor
- Faculty of Marine Science, Universitas Papua. Jl. Gunung Salju, Manokwari 98314, West Papua, Indonesia
autor
- Faculty of Forestry, Universitas Papua. Jl. Gunung Salju, Manokwari 98314, West Papua, Indonesia, jonnimarwa@gmail.com
autor
- Faculty of Forestry, Universitas Papua. Jl. Gunung Salju, Manokwari 98314, West Papua, Indonesia
- Faculty of Forestry, Universitas Papua. Jl. Gunung Salju, Manokwari 98314, West Papua, Indonesia
Bibliografia
- 1. Ahmed S., Kamruzzaman M., Rahman M.S., Sakib N., Azad M.S., Dey T. 2022a. Stand structure and carbon storage of a young mangrove plantation forest in coastal area of Bangladesh: The promise of a natural solution. Natural-Based Solutions, 2, 100025. https://doi.org/10.1016/j.nbsj.2022.100025
- 2. Ahmed S., Sarker S.K., Friess D.A., Kamruzzaman M., Jacobs M., Islam M.A., Alam M.A., Suvo M.J., Sani M.N.S., Dey T., Naabeh C.S.S., Pretzsch H. 2022b. Salinity reduces site quality and mangrove functions: From monitoring to understanding. Science of the Total Environment, 853, 158662. https://doi.org/10.1016/j.scitotenv.2022.158662.
- 3. Aye W.N., Yali W., Marin K., Thapa S., Tun A.W. 2019. Contribution of mangrove management to the livelihood of local communities in Ayeyarwaddy region, Myanmar. Forest, 10, 414, https://doi.org/10.3390/f10050414
- 4. Bak T., Nowotny J., Rekas M., Sorrell C.C., Vane E.R. 2000. A manometric method for the determination of chemical diffusion in non-stoichiometric oxides: example of (La, Sr)MnO3. Solid State Ionics, 135, 557–561.
- 5. Bhowmik A.K., Padmanaban R., Cabral P., Romeiras M.M. 2022. Global mangrove deforestation and its interacting social-ecological drivers: A systematic review and synthesis. Sustainability, 14, 4433. https://doi.org/10.3390/su14084433.
- 6. Carugati L., Gatto B., Rastelli E. et al. 2018. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci Rep, 8, 13298. https://doi.org/10.1038/s41598-018-31683-0.
- 7. Chowdhury R.R., Uchida E., Chen L., Osorio V., Yoder L. 2017. Anthropogenic drivers of mangrove loss: Geographic patterns and implications for livelihoods. In: Rivera-Monroy V, Lee S, Kristensen E, Twilley R. (eds) Mangrove ecosystems: A global biogeographic perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-62206-4_9.
- 8. de Girolamo A.M., Calabrese A., Pappagallo G., Santese G., Lo Porto A. 2012. Impact of anthropogenic activities on a temporary river. Fresenius Environmental Bulletin, 21(11), 3278–3286.
- 9. Eddy S., Milantara N., Sasmito S.D., Kajita T., Basyuni M. 2021. Anthropogenic Drivers of MangroveLoss and Associated CarbonEmissions in South Sumatra,Indonesia. Forests, 12, 187. https://doi.org/10.3390/f12020187.
- 10. Duwig C., Archundia D., Lehembre F., Spadini L., Morel M.C., Uzu G., Chincheros J., Cortez R., Martins J.M.F. 2014. Impacts of anthropogenic activities on the contamination of a sub watershed of Lake Titicaca. Are antibiotics a concern in the Bolivian Altiplano? Procedia Earth and Planetary Science, 10, 370–375. https://doi.org/10.1016/j.proeps.2014.08.062.
- 11. Friess D.A., Krauss K.W., Horstman E.M., Balke T., Bouma T.J., Galli D., Webb E.L. 2012. Are all intertidal wetlands naturally created equal? Bottle necks, threasholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol Rev, 87, 346–366.
- 12. Giesen W., Wulffraat S., Scholten L. 2006. Mangrove Guidebook for Southeast Asia. Wetland International and FAO, Bangkok.
- 13. Guo H., Zhang Y., Lan Z., Pennings S.C. 2013. Biotic interactions meditate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology, 19(9), 2765–2774. https://doi.org/10.1111/gcb.12221.
- 14. Hamuna B., Paulangan Y.P., Dimara L. 2015. Study of sea surface temperature using Aqua-MODIS satellite data in Jayapura sea waters, Papua. Depik, 4(3), 160–167.
- 15. Hamuna B., Tanjung R.H.R., Suwito, Maury HK, Alianto. 2018. Study of sea water quality and polluted index based on physical-chemical parameters around the sea waters of Depapre sub-district, Jayapura. Jurnal Ilmu Lingkungan, 16(1), 35–43. https://doi.org/10.14710/jil.16.1.35-43.
- 16. Hastuti E.D., Anggoro S., Pribadi R. 2012. The effects of environmental factors on the dynamic growth pattern of mangrove Avicennia marina. Journal of Coastal Development, 16(1), 57–61.
- 17. Hilmi E., Kusmana C., Suhendang E., Iskandar. 2017. Correlation analysis between seawater intrusion and mangrove greenbelt. Indonesian Journal of Forestry Reseach, 4(2), 151–168.
- 18. Hossain M.Z., Aziz C.B.A., Saha M.L. 2012. Relationships between soil physico-chemical properties and total viable bacterial counts in Sunderban Mangrove Forests, Bangladesh. Dhaka Univ Journal Biol Sci, 21(2), 196–175.
- 19. Hu B., Liao J., Zhang Q., Ding S., He M., Qiao Y., Zhang Z., Shang C., Chen S. 2022. Diversity and vertical distribution of sedimentary bacterial communities and its association with metal bioavailability in three distinct mangrove reserves of South China. Water, 14, 971. https://doi.org/ 10.3390/w14060971.
- 20. Islam M.A, Ahmad S., Dey T., Biswas R., Kamruzzaman M., Partho S.S., Das B.C. 2022. Dominant species losing functions to salinity in the Sundarbans Mangrove Forest, Bangladesh. Regional Study in Marine Science, 55, 102589. https://doi.org/10.1016/j.rsma.2022.102589.
- 21. Li D., Dorber M., Barbarossa V., Verones F. 2022. Global characterization factors quantifying the impacts of increasing water temperature on freshwater fish. Ecological indicators, 142, 109201. https://doi.org/10.1016/j.ecolind.2022.109201.
- 22. Liao J., Zhen J., Zhang L., Metternicht. 2019. Understanding dynamics of mangrove forest on protected areas of Hainan Island, China: 30 years of evidence from remote sensing. Sustainability, 11(19), 5356. https://doi.org/10.3390/su11195356.
- 23. Khang N.D., Kotera A., Sakamoto T., Yokozawa M. 2008. Sensitivity of salinity intrusion to sea level rise and river flow change in Vietnamese Mekong delta-impacts on availability of irrigation water for rice cropping. J.Agric.Meteorol, 63(3), 167–176.
- 24. Kibler K.M., Pilato C., Walters L.J., Donnelly M., Taye J. 2022. Hydrodynamic limitations to mangrove seedling retention in subtropical estuaries. Sustainability, 14, 8605. https://doi.org/10.3390/su14148605.
- 25. Konom N.H., Cabuy R.L., Wanma A.O. 2019. Damaging rate identification of mangrove forest area due to anthropogenic activities in Airtiba area, District of Kaimana. Jurnal Kehutanan Papuasia, 5(2), 153–163. https://doi.org/10.46703/jurnalpapuasia.Vol5. Iss2.148. [Indonesian]
- 26. Mcllveen S., Hung P.Q. 2019. Improving livelihoods and increasing coastal resilience: A look at integrated mangrove-shrimp aquaculture in Vietnam. Aquaculture, 23(4), 11–13.
- 27. Nihan A.R.K., Kusmana C., Krisanti M., Tiriyana T., Ulumuddin Y.I. 2022. Bibliometric and meta-analysis studies of the correlation between macrozoobenthos abundance and mangrove density. OP Conf. Series: Earth and Environmental Science, 1109, 012080. https://doi.org/10.1088/1755-1315/1109/1/012080.
- 28. Nyangoko B.P., Berg H., Mangora M.M., Gullström M., Shalli M.S. 2021. Community perceptions of mangrove ecosystem services and their determinants in the Rufiji Delta, Tanzania. Sustainability, 13, 63. https://doi.org/10.3390/su13010063.
- 29. Nguyen H. 2014. The relation of coastal mangrove changes and adjacent land-use: A review in South-east Asia and Kien Giang, Vietnam. Ocean & Coastal Management, 90, 1–10. https://doi.org/10.1016/j.ocecoaman.2013.12.016.
- 30. Orchard S.E., Stringer L.C., Quinn C.H. 2016. Mangrove system dynamics in Southeast Asia: linking livelihoods and ecosystem services in Vietnam. Reg Environ Change, 16, 865–879. https://doi.org/10.1007/s10113-015-0802-5.
- 31. Prambudy H., SUpriyatin T., Setiawan F. 2019. The testing of chemical oxygen demand (COD) and biological oxygen demand (BOD) of river water in Cipager Cirebon. IOP Conf. Series: Journal of Physics: Conf. Series, 1360, 012010. https://doi.org/10.1088/1742-6596/1360/1/012010.
- 32. Qi M., Han Y., Zhao Z., Li Y. 2021. Integrated determination of chemical oxygen demand and biological oxygen demand. Pol. J. Environ. Stud, 30(2), 1785–1794. https://doi.org/10.15244/pjoes/122439
- 33. R Development Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- 34. Rugebregt M.J., Nurhati I.S. 2020. Preliminary study of ocean acidification: Relationship of pH, temperature, and salinity in Ohoilirir, South-east Maluku. IOP Conf. Series: Earth and Environmental Science, 618, 012004. https://doi.org/10.1088/1755-1315/618/1/012004.
- 35. Saha S., Hossain M., Hossain M.S., Siddique M.R.S., Abdullah S.M.R., Saha C. 2020. Salt tolerance of Xylocarpus mekongesis Pierre: Survival and growth of seedlings, nutrients and carbon distribution in seedlings parts. Open Journal of Forestry, 10(3), 293–306. https://doi.org/10.4236/ojf.2020.103019.
- 36. Sarker S., Reeve R., Thompson J., et al. 2016. Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem? Sci Rep, 6, 21234. https://doi.org/10.1038/srep21234.
- 37. Sasmito S.D., Sillanpää M., Hayes M.A., Bachri S., Saragi-Sasmito M.F., et al. 2020. Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change. Glob Chang Biol, 26(5), 3028–3039. https://doi.org/10.1111/gcb.15056.
- 38. Sidabutar N.V., Namara I., Hartono D.M., Soesilo T.E. 2017. The effect of anthropogenic activities to the decrease of water quality. IOP Conf. Series: Earth and Environmental Science, 67, 012034. https://doi.org/10.1088/1755-1315/67/1/012034.
- 39. Shaikh A.A., Halder M., Talukder M.B.A., Mohibullah S., Saha S. 2021. The dependency of coastal livelihood on forest resources, and alternative options in the periphery of the Sundarbans Reserve Forest, Patharghata, Bangladesh. Open Journal of Forestry, 11, 398–414. https://doi.org/10.4236/ojf.2021.114024.
- 40. Sraun M., Bawole R., Marwa J., Sinery A.S., Cabuy R.L. 2022. Diversity, composition, structure and canopy cover of mangrove tree in six location along Bintuni riverbank, Bintuni Bay, West Papua, Indonesia. Biodiversitas, 23(11), 5835–5843. https://doi.org/10.13057/biodiv/d231137.
- 41. Srikanth S., Kaihekulani S., Lum Y., Chen Z. 2015. Mangrove root: adaptations and ecological importance. Trees, 30(2), 451–465. https://doi.org/10.1007/s00468-015-1233-0.
- 42. Sruthi P., Shackira A.M., Puthur J.T. 2017. Heavy metal detoxification mechanisms in halophytes. An overview. Wetlands Ecology Management, 25, 129–148. https://doi.org/10.1007/s11273-016-9513-z.
- 43. Su’aidah I., Hastuti E.D., Izzati M., Darmanti S. 2021. Relationship of total phenol of roots and [Avicennia marina (Forsk) Vierh] Mangrove Leavewith N, P, and C Organic Sediment. Buletin anatomi dan fisiologi, 6(1), 17–25.
- 44. Teutli-Hernández C., Herrera-Silveira J.A., Cisneros-de la Cruz D.J., Román-Cuesta R. 2020. Mangrove ecological restoration guide: Lessons learned. Mainstreaming Wetlands into the Climate Agenda: A multilevel approach (SWAMP). CIFOR, /CIN-VESTAV-IPN/UNAM-Sisal/PMC, Bogor.
- 45. Tran L.X., Fischer A. 2017. Spatiotemporal changes and fragmentation of mangroves and its effects on fish diversity in Ca Mau Province (Vietnam). Journal of Coastal Conservation, 21, 355–368. https://doi.org/10.1007/s11852-017-0513-9.
- 46. Villocino M.D.S, Orbita M.L.S., Tampus A.D., Manting M.M.E., Orbita R.R. 2015. The effect of environmental factors on the growth of mangrove seedlings in Kauswagan, Lanao del Norte, Mindanao, Philippines. AAB Bioflux, 7(2), 138–143.
- 47. Vo Q.T., Vo Q.M., Moder F., Oppelt N. 2012. Review of valuation methods for mangrove ecosystem services. Ecol Indic, 23, 431–446. https://doi.org/10.1016/j.ecolind.2012.04.022
- 48. Vreugdenhil C.A., Gayen, B. 2021. Ocean convection. Fluids, 6, 360. https://doi.org/10.3390/fluids6100360.
- 49. Ximenes A.C., Ponsoni L., Lira C.F., Koedam N., Dahdouh-Guebes F. 2018. Does sea surface temperature contribute to determining range limits and expansion of mangroves in Eastern South America (Brazil)? Remote Sens, 10, 1787. https://doi.org/10.3390/rs10111787.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ed158979-a41f-408c-8c21-5a9c0e424756