Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | No. 2 | 2--8
Tytuł artykułu

Application possibilities and properties of plastic mixtures based on biodegradable polymers

Treść / Zawartość
Warianty tytułu
PL
Możliwości stosowania oraz właściwości mieszanin tworzywowych na bazie polimerów biodegradowalnych
Języki publikacji
EN
Abstrakty
EN
In this study, an attempt was made to develop generalized conclusions based on previous publications regarding research on the processing possibilities and analysis of the mechanical properties of PLA and TPS polymer mixtures and the possibility of modifying TPS with calcium carbonate. An in-depth analysis of the obtained results turned out to be quite interesting. Further research is necessary to explain the phenomena occurring when mixing two biodegradable polymers, where a certain synergism and the impact of the filler on the polymer matrix are observed.
PL
W niniejszym opracowaniu podjęto próbę opracowania uogólnionych wniosków na podstawie wcześniejszych publikacji dotyczących badań nad możliwością przetwórstwa oraz analizy właściwości mechanicznych mieszanin polimerowych PLA i TPS oraz możliwości modyfikacji TPS węglanem wapnia. Pogłębiona analiza uzyskanych wyników okazała się dosyć intersująca. Konieczne są dalsze badania polegające na wyjaśnieniu zjawisk zachodzących podczas mieszania dwóch polimerów biodegradowalnych, gdzie zaobserwowane pewien synergizm oraz odziaływania napełniacza na osnowę polimerową.
Wydawca

Rocznik
Tom
Strony
2--8
Opis fizyczny
Bibliogr. 80 poz., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Plastics Processing Department, 85 Narbutta Street, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Plastics Processing Department, 85 Narbutta Street, 02-524 Warsaw, Poland, mariusz.fabijanski@pw.edu.pl
Bibliografia
  • [1] Kulshreshtha A. K.; Vasile C. Handbook of Polymer Blends and Composites, Tom 3A; Rapra Technology Limited: Shawbury, UK, 2003.
  • [2] Rajeshkumar L. Biodegradable polymer blends and composites from renewable resources. In Woodhead Publishing Series in Composites Science and Engineering, Biodegradable Polymers, Blends and Composites; Woodhead Publishing: Cambridge, UK, 2022, 549, https://doi.org/10.1016/B978-0-12-823791-5.00015-6.
  • [3]. Garbarski J. Materiały i kompozyty niemetalowe. OWPW, Warszawa 2001.
  • [4] Karan H.; Funk C.; Grabert M.; Oey M.; Hankamer B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237, https://doi.org/10.1016/j.tplants.2018.11.010.
  • [5] Zhang Q.; Song M.; Xu Y.; Wang W.; Wang Z.; Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog. Polym. Sci. 2021, 120, 101430. https://doi.org/10.1016/j.progpolymsci.2021.101430.
  • [6] Kozłowski J., Kochański A., Perzyk M., Tryznowski M. Zastosowanie PLA jako spoiwa w masach formierskich i rdzeniowych. Arch. Foundry Eng. 2014, 14, 51-54.
  • [7] Rabek J. Polimery. Otrzymywanie, metody badawcze i zastosowania. PWN Warszawa 2013.
  • [8] Żenkiewicz M., Richert J. (2022). Wpływ nanonapełniaczy i wymiarów próbek na wytrzymałość mechaniczną wtryskiwanych nanokompozytów polilaktydowych. Polimery, 2022, 53, 7-8, 591-594. Pobrano z https://polimery.ichp.vot.pl/index.php/p/article/view/1348.
  • [9] Fabijański M. Effect of calcium carbonate addition on mechanical properties of polylactide, Przem. Chem. 2017, 96, 4, s.894, DOI:10.15199/62.2017.4.33.
  • [10] Dastidar T. G., Netravali A. Cross-Linked Waxy Maize Starch-Based “Green” Composites. ACS Sustain. Chem. Eng. 2013, 1, 1537, https://doi.org/10.1021/sc400113a.
  • [11] Saavedra-Rojas F. A., Bhandari S., Lopez-Anido R. A. Environmental Durability of Bio-Based and Synthetic Thermoplastic Composites in Large-Format Additive Manufacturing. Polymers, 2024, 16, 787. https://doi.org/10.3390/polym16060787.
  • [12] Rydz J., Sikorska W., Musioł M. Biosynthesis and Biodegradation- Eco-Concept for Polymer Materials. Int. J. Mol. Sci. 2024, 25, 2674. https://doi.org/10.3390/ijms25052674.
  • [13] Gilani I. E., Sayadi S., Zouari N., Al-Ghouti M. A. Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications. Bioresour. Technol. Rep. 2023, 24, 101606.https://doi.org/10.1016/j.biteb.2023.101606.
  • [14] Moshood T. D., Nawanir G., Mahmud F., Mohamad F., Ahmad M. H., AbdulGhani A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. https://doi.org/10.1016/j. crgsc.2022.100273.
  • [15] Singh N., Ogunseitan O. A., Wong M. H., Tang Y. Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustain. Horiz. 2022, 2, 100016, https://doi.org/10.1016/j. horiz.2022.100016.
  • [16] The European Union. What It Is and What It Does; Publications Office of the European Union: Luxembourg, 2022; Available online: https://op.europa.eu/webpub/com/eu-what-it-is/en/ (dostęp: 02.03.2024).
  • [17] Portilla N. The Role of Biodegradable Materials in Reducing Medical Plastics Waste. Available online: https://www.medicalplasticsnews. com/medical-plastics-industry-insights/medical-plastics-sustainability-insights/the-role-of-biodegradable-materials-in-reducingmedical-plas/ (dostęp 02.03.2024).
  • [18] Szymanek I., Cvek M., Rogacz D., Żarski A., Lewicka K., Sedlarik V., Rychter P. Degradation of polylactic acid/polypropylene carbonate films in soil and phosphate buffer and their potential usefulness in agriculture and agrochemistry. Int. J. Mol. Sci. 2024, 25, 653. https://doi.org/10.3390/ijms25010653.
  • [19] Hatti-Kaul R., Nilsson L. J., Zhang B., Rehnberg N., Lundmark S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol. 2020, 38, 50, https://doi.org/10.1016/j.tibtech.2019.04.011.
  • [20] Andrzejewska A., Topoliński T. Polimery biodegradowalne do zastosowań biomedycznych. Postępy w Inżynierii Mech. 2015, 6, 5-12.
  • [21] Garbarski J., Fabijański M. Biodegradable polymers: polylactide - processing, mechanical properties Polish Technical Review, 2023, 3, 9-13, DOI: 10.15199/180.2023.3.2.
  • [22] Fabijański M., Spasówka E., Szadkowska A. Effect of modified chalk on the selected properties of PLA, Inżynieria materiałowa, 2020, 2, 22, DOI: 10.15199/28.2020.2.3.
  • [23] Hamad K., Kaseem M., Ayyoob M., Joo J., Deri F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83-127. https://doi.org/10.1016/j.progpolymsci.2018.07.001.
  • [24] Fabijański, M. Study of the Single-Screw Extrusion Process Using Polylactide. Polymers 2023, 15, 3878. https://doi.org/10.3390/ polym15193878.
  • [25] Samir A., Ashour F. H., Hakim A. A. A., Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 2022, 6, 68. https://doi.org/10.1038/s41529-022-00277-7.
  • [26] Hofmann T., Ghoshal S., Tufenkji N., Adamowski J. F., Bayen S., Chen Q., Demokritou P., Flury M., Huffer T., Ivleva N. P. Plastics can be used more sustainably in agriculture. Commun. Earth Environ. 2023, 4, 332. https://doi.org/10.1038/s43247-023-00982-4.
  • [27] Rydz J., Duale K., Janeczek H., Sikorska W., Marcinkowski A., Musioł M., Godzierz M., Kordyka A., Sobota M., Peptu C. Nematic-to-isotropic phase transition in poly(L-lactide) with addition of cyclodextrin during abiotic degradation study. Int. J. Mol. Sci. 2022, 23, 7693. https://doi.org/10.3390/ijms23147693.
  • [28] Stepaniak P., Softić S., Woźniak S., Fabijański M., Nowakowski K. Properties of polyethylene regranulates made from end-of-life products, Przem. Chem. 2023, 102, 5, 473, DOI:10.15199/62.2023.5.5.
  • [29] Wang D., Yu J., Zhang J.; He J.; Zhang J. Transparent bionanocomposites with improved properties from poly (propylene carbonate) (PPC) and cellulose nanowhiskers (CNWs) Compos. Sci. Technol. 2013, 85, 83, https://doi.org/10.1016/j.compscitech.2013.06.004.
  • [30] Rychter P.; Biczak R.; Herman B.; Smyłła A.; Kurcok P.; Adamus G.; Kowalczuk M. Environmental degradation of polyester blends containing atactic poly (3-hydroxybutyrate). Biodegradation in soil and ecotoxicological impact. Biomacromolecules 2006, 7, 3125-3131. https://doi.org/10.1021/bm060708r.
  • [31] Fabijański M. Mechanical Properties of Polylactide Filled with Micronized Chalcedonite, J. Compos. Sci., 2022; 6, 12, 387, https://doi.org/10.3390/jcs6120387.
  • [32] Luzi F.; Fortunati E.; Puglia D.; Petrucci R.; Kenny J. M.; Torre L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polym. Degrad. Stab. 2015, 121, 105, https://doi.org/10.1016/j.polymdegradstab.2015.08.016.
  • [33] Rychter P.; Kawalec M.; Sobota M.; Kurcok P.; Kowalczuk M. Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact. Biomacromolecules 2010, 11, 839-847. https://doi.org/10.1021/bm901331t.
  • [34] Fabijański M. Effect of multiple processing on the strength properties of polylactide/polystyrene mixture, Przem Chem. 2022, 101, 1, 65, DOI:10.15199/62.2022.1.9.
  • [35] Da Silva D.; Kaduri M.; Poley M.; Adir O.; Krinsky N.; Shainsky-Roitman J.; Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9, https://doi.org/10.1016/j. cej.2018.01.010.
  • [36]. Duda A.; Penczek S. Polilaktyd [poli(kwas mlekowy)]: Synteza, właściwości i zastosowania. Polimery 2003, 48, 16, http://ichp. vot.pl/index.php/p/article/view/1832.
  • [37] Fabijański M. Polymer biocomposites based on polylactide and cellulose fibers. Przem. Chem. 2020, 99, 6, 923, DOI:10.15199/62.2020.6.19.
  • [38] Saxena P.; Shukla P.; Gaur M. Thermal analysis of polymer blends and double layer by DSC. Polym. Polym. Compos. 2021, 29, 11, https://doi.org/10.1177/0967391120984606.
  • [39] Capitain C.; Ross-Jones J.; Möhring S.; Tippkötter N. Differential scanning calorimetry for quantification of polymer biodegradability in compost. Int. Biodeterior. Biodegrad. 2020, 149, 104914. https://doi.org/10.1016/j.ibiod.2020.104914.
  • [40] Slezak R.; Krzystek L.; Puchalski M.; Krucińska I.; Sitarski A. Degradation of bio-based film plastics in soil under natural conditions. Sci. Total Environ. 2023, 866, 161401, https://doi.org/10.1016/j. scitotenv.2023.161401.
  • [41] Fabijański M. Mechanical strength and flammability of polylactide, Przem. Chem. 2019, 98, 4, 556, DOI:10.15199/62.2019.4.8.
  • [42] Fabijański M. Effect of injection parameters on the mechanical properties of foamed polylactide, Przem. Chem. 2021, 100, 8, 750, DOI:10.15199/62.2021.8.5.
  • [43] Han L.; Han C.; Zhang H.; Chen S.; Dong L. Morphology and properties of biodegradable and biosourced polylactide blends with poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Compos. 2012, 33, 850, https://doi.org/10.1002/pc.22213.
  • [44] Pyda, M.; Czerniecka-Kubicka, A. Thermal Properties and Thermodynamics of Poly(L-lactic acid). In Synthesis, Structure and Properties of Poly(lactic acid); Advances in Polymer Science; Springer: Cham. 2017, 279, 153, DOI: 10.1007/978-3-319-64230-7.
  • [45] Kowalewska A.; Nowacka M. Supramolecular interactions in hybrid polylactide blends - The structures, mechanisms and properties. Molecules 2020, 25, 3351 https://doi.org/10.3390/molecules25153351.
  • [46] Gross R. A.; Kalra B. Biodegradable polymers for the environment. Science 2002, 297, 803, DOI: 10.1126/science.297.5582.803.
  • [47] Michalski A.; Makowski T.; Biedroń T.; Brzeziński M.; Biela, T. Controlling polylactide stereocomplex (sc-PLA) self-assembly: From microspheres to nanoparticles. Polymer 2016, 90, 242, https://doi. org/10.1016/j.polymer.2016.03.049.
  • [48] Zhao, L.-S.; Cai, Y.-H.; Liu, H.-L. Physical properties of Poly(L-lactic acid) fabricated using salicylic hydrazide derivative with tetraamide structure. Polym. Plast. Technol. Mater. 2020, 59, 117-129. https://doi.org/10.1080/25740881.2019.1625386.
  • [49] Garbarski J.; Fabijański M. Properties of high impact polystyrene flame retarded by magnesium hydroxide and modified with triblock copolymer styrene/butadiene/styrene, Polimery, 2005, 50, 3, 190, DOI:10.14314/polimery.2005.190.
  • [50] Moraczewski, K.; Pawłowska, A.; Stepczyńska, M.; Malinowski, R.; Kaczor, D.; Budner, B.; Gocman, K.; Rytlewski, P. Plant extracts as natural additives for environmentally friendly polylactide films. Food Packag. Shelf Life 2020, 26, 100593 https://doi.org/10.1016/j. fpsl.2020.100593.
  • [51] Bocz K., Szolnoki B., Władyka-Przybylak M., Bujnowicz K., Harakály G., Bodzay B., Zimonyi E., Toldy A., Marosi, G. Uniepalnianie biokompozytów na bazie skrobi termoplastycznej.Polimery, 2013,58, 5, 385, https://ichp.vot.pl/index.php/p/article/view/744.
  • [52] Szadkowska A., Jeziórska R., Żubrowska M., Spasówka E., Rościszewski, P. Wpływ plastyfikatora z grupami silanolowymi na strukturę oraz właściwości mieszaniny polilaktydu i termoplastycznej skrobi kukurydzianej. Polimery, 2021 61, 10, 683-692. https://doi. org/10.14314/polimery.2016.683.
  • [53] Świerz-Motysia, B., Jeziórska, R., Szadkowska, A., & Piotrowska, M. (2011). Otrzymywanie i właściwości biodegradowalnych mieszanin polilaktydu i termoplastycznej skrobi. Polimery 2011, 56, 4, 271, https://ichp.vot.pl/index.php/p/article/view/916.
  • [54] Cui C.; Ji N.; Wang Y.; Xiong L.; Sun Q. Bioactive and Intelligent Starch-Based Films: A Review. Trends Food Sci. Technol. 2021, 116, 854, https://doi.org/10.1016/j.tifs.2021.08.024.
  • [55] Jeziorska R.; Szadkowska A.; Studzinski M.; Chmielarek M.; Spasowka E. Morphology and Selected Properties of Modified Potato Thermoplastic Starch. Polymers, 2023, 15, 1762. https://doi. org/10.3390/polym15071762.
  • [56] Jeziorska R.; Legocka I.; Szadkowska A.; Spasowka E.; Zubrowska M.; Studzinski M.; Wierzbicka E.; Dzierżawski J.; Kolasa J.; Rucinski J. Method of Producing Modified Thermoplastic Starch and Biodegradable Composites Containing Modified Thermoplastic Starch. Polish Patent Application 441 782, 19 July 2022.
  • [57] Ramakrishnan R.; Kulandhaivelu S. V.; Roy S.; Viswanathan V.P. Characterisation of Ternary Blend Film of Alginate/Carboxymethyl Cellulose/Starch for Packaging Applications. Ind. Crop. Prod. 2023, 193, 116114 https://doi.org/10.1016/j.indcrop.2022.116114.
  • [58] Mohanty S.; Nayak S.K. Starch based biodegradable PBAT nanocomposites: Effect of starch modification on mechanical, thermal, morphological and biodegradability behavior. Int. J. Plast. Technol. 2009, 13, 163, https://doi.org/10.1007/s12588-009-0013-3.
  • [59] Muszyński S, Świetlicki M., Oniszczuk T., Kwaśniewska A., Świetlicka I., Arczewska M., Oniszczuk A., Bartnik G., Kornarzyński K., Gładyszewska B. Effect of the surface structure of thermoplastic starch pellets on the kinetics of water vapor adsorption, Przem. Chem. 2016, 95, 4, 865, DOI: 10.15199/62.2016.4.31.
  • [60] Szymański Ł.; Grabowska B.; Kaczmarska K.; Kurleto Ż. Celuloza i jej pochodne–zastosowanie w przemyśle. Arch. Foundry Eng. 2015, 15, 129.
  • [61] Staker J.; Schott S.; Singh R.; Collier K.; Druschel G.; Siegel A.P.; Tovar A. Influence of Choline Chloride/Urea and Glycerol Plasticizers on the Mechanical Properties of Thermoplastic Starch Plastics. Polymers 2024, 16, 751. https://doi.org/10.3390/ polym16060751.
  • [62] Côto T.; Moura I.; Sá A.D.; Vilarinho C.; Machado A.V. Sustainable Materials Based on Cellulose from Food Sector Agro-Wastes. J. Renew. Mater. 2018, 6, 688-697.
  • [63] Sahari J.; Sapuan S.; Zainudin E.; Maleque M. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata). Carbohydr. Polym. 2013, 92, 1711, https://doi. org/10.1016/j.carbpol.2012.11.031.
  • [64] Wittaya, T. Rice starch-based biodegradable films: Properties enhancement. Struct. Funct. Food Eng. 2012, 5, 103-134.
  • [65] Suriyatem R.; Auras R.A.; Rachtanapun P. Improvement of mechanical properties and thermal stability of biodegradable rice starch- based films blended with carboxymethyl chitosan. Ind. Crops Prod. 2018, 122, 37, https://doi.org/10.1016/j.indcrop.2018.05.047.
  • [66] Collier K.; Goins S.; Chirgwin A.; Stanfield I. Processing of Plastic Film from Potato Starch: Effect of Drying Methods. J. Purdue Undergrad. Res. 2022, 12, 4, https://doi.org/10.7771/2158- 4052.1532.
  • [67] Halimatul M. J., Sapuan S. M., Jawaid M., Ishak,M. R., Ilyas R. A. (2021). Effect of sago starch and plasticizer content on the properties of thermoplastic films: mechanical testing and cyclic soaking-drying. Polimery, 2021, 64, 6, 422, https://doi.org/10.14314/polimery.2019.6.5.
  • [68] Ai Y.; Jane J. Understanding starch properties and functionality. In Starch Food, 2nd ed.; Woodhead Publishing: Oxford, UK, 2018.
  • [69] Mlynarczyk K.; Longwic F.; Podkoscielna B.; Klepka T. Influence on natural fillers on the thermal and mechanical properties of epoxy resin composites. Polimery 2022, 67, 102, https://doi.org/10.14314/polimery.2022.3.2.
  • [70] Jeziorska R.; Szadkowska A.; Spasowka E.; Lukomska A.; Chmielarek M. Characteristics of biodegradable polylactide/thermoplastic starch/nanosilica composites: Effects of plasticizer and nanosilica functionality. Adv. Mater. Sci. Eng. 2018, 15, https://doi. org/10.1155/2018/4571368.
  • [71] Wardzinska-Jarmulska E.; Szczepaniak B.; Szczepankowska B.; Modzelewska A.; Stanecka J.; Badowska A.; Potajczuk-Czaja K.; Grzybek R. Method of Obtaining Unplasticized Polyester Plasticizer. Polish Patent 236 221, 13 August 2020.
  • [72] Zhang Y.; Han J.H. Plasticization of pea starch films with monosaccharides and polyols. J. Food Sci. 2006, 71, 253-261. https://doi.org/10.1111/j.1750-3841.2006.00075.x.
  • [73] Żołek-Tryznowska Z.; Piłczyńska K.; Murawski T.; Jeznach A.; Niczyporuk K. Study on the Printability of Starch-Based Films Using Ink-Jet Printing. Materiały 2024 ,17, 455. https://doi.org/10.3390/ ma17020455.
  • [74] Su C.Y.; Li D.; Wang L.; Wang Y. Biodegradation Behavior and Digestive Properties of Starch-Based Film for Food Packaging - A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 6923, https://doi.org/10.1080/10408398.2022.2036097.
  • [75] Zullo, J.R.; Iannace, S. The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydr. Polym. 2009, 77, 376 https://doi.org/10.1016/j. carbpol.2009.01.007.
  • [76] Dang K.M.; Yoksan R. Thermoplastic starch blown films with improved mechanical and barrier properties. Int. J. Biol. Macromol. 2021, 188, 290, https://doi.org/10.1016/j.ijbiomac.2021.08.027.
  • [77] Fabijański M., Garbarski J.: Physical properties of the mixture polylactide/thermoplastic starch, Przem. Chem. 2023, 102, 9, 954, DOI:10.15199/62.2023.9.14.
  • [78] Fabijański M., Garbarski J. Mechanical properties of thermoplastic starch filled with calcium carbonate, Przem. Chem. 2023, 102, 8, 829, DOI:10.15199/62.2023.8.10.
  • [79] Garbarski J. Fabijański M. Strength of the thermoplastic starch/ polylactide mixture. Przem. Chem. 2024, 103, 3 (przyjęte do druku).
  • [80] Garbarski J. Fabijański M. Strength of Thermoplastic Starch Filled with Calcium Carbonate. Przem. Chem. 2024, 103, 3 (przyjęte do druku).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-393d2262-6a5c-47e9-87ec-3fa2974086b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.