Warianty tytułu
Wydajne, rozmyte podejście PI do sterowania w czasie rzeczywistym mobilnego robota opartego na ROS
Języki publikacji
Abstrakty
This paper presents the implementation and experimental validation of a fuzzy PI control framework on a Turtlebot Kobuki. Due to the robot complex kinematic model structure, we first designe a guidance law to overcome computational challenges that could become problematic under real time control, further experimentation tryals evoked the need for a robust solution which was introduced through an integral action of the PI controller cascaded into the Fuzzy controller. Control performance analysis were carried out in a real experimental setup in order to validate the effectiveness of the proposed scheme.
Ten artykuł przedstawia implementację i eksperymentalną walidację rozmytej struktury kontroli PI na Turtlebot Kobuki. Ze względu na złożoną strukturę modelu kinematycznego robota, najpierw opracowaliśmy prawo przewodnie, aby przezwyciężyć wyzwania obliczeniowe, które mogą stać się problematyczne przy sterowaniu w czasie rzeczywistym. do kontrolera Fuzzy. Analizę działania sterowania przeprowadzono w rzeczywistym układzie doświadczalnym w celu sprawdzenia skuteczności proponowanego schematu.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--5
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
- Laboratory of Automatics and Systems Analysis (L.A.A.S.), Department of Electrical Engineering, National Polytechnic School –Maurice Audin - Oran. BP 1523 El’ M’naouer, Oran, Algeria, rezoug.nabil@gmail.com
autor
- Laboratory of Automatics and Systems Analysis (L.A.A.S.), Department of Electrical Engineering, National Polytechnic School –Maurice Audin - Oran. BP 1523 El’ M’naouer, Oran, Algeria, mokhtar.zerikat@enp-oran.dz
autor
- Department of Electrical Engineering, University Mustapha Stambouli of Mascara.BP.305, Route El Mamounia, 29000 Mascara Algeria, s.chekroun@univ-mascara.dz
Bibliografia
- [1] Vincent Vanhoucke and Andrew Senior and Mark Z. Mao “Improving the speed of neural networks on CPUs”, Deep Learning and Unsupervised Feature Learning, NIPS 2011.
- [2] J.Heikkinen, T. Minav and A. D. Stotckaia, "Self-tuning parameter fuzzy PID controller for autonomous differential drive mobile robot," 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), St. Petersburg, 2017, pp. 382-385, doi: 10.1109/SCM.2017.7970592. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 2/2022 5
- [3] Yang, Simon & Hu, Tiemin. (2002). An Efficient Neural Network Approach to Real-time Control of a Mobile Robot with Unknown Dynamics. Differential Equations and Dynamical Systems. 10.
- [4] Nascimento, Tiago & Dorea, Carlos & Gonçalves, Luiz. (2018). Nonlinear model predictive control for trajectory tracking of nonholonomic mobile robots: A modified approach. International Journal of Advanced Robotic Systems.
- [5] Héctor M Becerra, J Armando Colunga, Jose Guadalupe Romero.(2018). Simultaneous convergence of position and orientation of wheeled mobile robots using trajectory planning and robust controllers.International Journal of Advanced Robotic Systems
- [6] Souanef, Toufik. (2019). Adaptive Guidance and Control of Small Unmanned Aerial Vehicles. 10.13140/RG.2.2.21153.56166.
- [7] Yesil, Engin & Guzelkaya, M. & Eksin, Ibrahim. (2003). Fuzzy PID controllers: An overview.
- [8] Xu, J. X., Hang, C. C, Liu, C., 2000. Parallel structure and tuning of a fuzzy PID controller. Automatica, 36, 673-684.
- [9] Hu, B., Mann, G. K. I., Gosine, R. G., 1999. New methodology for analytical and optimal design of fuzzy PID controllers. IEEE Trans. Fuzzy Systems 7(5), 521-539.
- [10] “Kobuki Documentation”, relase 2.0, Dabit industries.
- [11] Corke, P. “Integrating ROS and MATLAB [ROS Topics].” IEEE Robotics & Automation Magazine 22 (2015): 18-20.
- [12] Besseghieur, Khadir Lakhdar AU, Trębiński, RadosławAU, Kaczmarek, Wojciech AU, Panasiuk, Jarosław PY, "Trajectory tracking control for a nonholonomic mobile robot under ROS", Journal of Physics: Conference Series, Volume 1016, 6th International Conference on Mechatronics and Control Engineering (ICMCE 2017) 2–4 December 2017, St. Petersburg, Russian Federation.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5e4c71c-04bd-40c4-832e-ad588d1a5af7