Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 23, No. 1 | 1-23
Tytuł artykułu

New frontiers for infrared

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Advanced Infrared Technology and Applications - AITA 2013 (12 ; 10-13.09.2013 ; Turin, Italy)
Języki publikacji
EN
Abstrakty
EN
Infrared (IR) science and technology has been mainly dedicated to surveillance and security: since the 70’s specialized techniques have been emerging in thermal imaging for medical and cultural heritage diagnostics, building and aeronautics structures control, energy savings and remote sensing. Most of these applications were developed thanks to IR FPAs sensors with high numbers of pixels and, actually, working at room temperatures. Besides these technological achievements in sensors/ receivers, advanced developments of IR laser sources up to far IR bands have been achieved in the form QCL (quantum cascade laser), allowing wide band TLC and high sensitivity systems for security. recently new sensors and sources with improved performances are emerging in the very far IR region up to submillimeter wavelengths, the so called terahertz (THz) region. A survey of the historical growth and a forecast of the future developments in Devices and Systems for the new frontier of IR will be discussed, in particular for the key questions: “From where and when is IR coming?”, “Where is it now?” and “Where will it go and when?”. These questions will be treated for key systems (Military/Civil), key devices (Sensors/ Sources), and new strategic technologies (Nanotech/TeraHertz).
Słowa kluczowe
Wydawca

Rocznik
Strony
1-23
Opis fizyczny
Bibliogr. 90 poz., il., rys.
Twórcy
autor
  • Consorzio C. R. E. O. Centro Ricerche Elettro Ottiche - L’Aquila, SS.17 Localitá Boschetto, I-67100 L’Aquila, Italy, corsi@romaricerche.it
Bibliografia
  • 1. “Infrared Tutorial” www.ZyTcmp.com / Radiant Innovation Inc. Version 006 2000-2003.
  • 2. F. Adams, The Genuine Works o f Hippocrates, Williams and Wilkins, Baltimore, 1939.
  • 3. T.F. Sherwood, "The origin of the thermometer", Annals of Science 5, 129-156(1942).
  • 4. W. Herschel, “Experiments on the rel'rangibility of the visible rays of the sun”, Philosophical Transactions of the Royal Society of London 90, 284-292 (1800).
  • 5. E.S. Barr, “Historical survey of early development of the IR region”, Am. J. Phys. 28, 42-54 (I960).
  • 6. S.P. Langley, “The bolometer and radiant energy”, Proc. Am. Academy of Arts and Sciences 16, 342-358 (1881).
  • 7. L. Bellingham, “An Infrared eye”, US Patent 1158967, Patented 1915.
  • 8. R.D. Parker, “Thermic balance or Radiometer” US Patent 1099199, Patented 1914.
  • 9. A.A. Kostenko, A.I. Nosich, and I.A. Tishchenko, “Radar Prehistory, Soviet Side”, IEEE Proc. Antennas and Propagation Int. Symp. 4, 44-47 (2001).
  • 10. J.S. Belrose, “The Sounds of a spark transmitter: telegraphy and telephony”, Radio Scientist Online, 1994.
  • 11. G. Marconi, British Patent 18 105, 1901. The Electrical Experimenter, R.A. Fessenden, The Electrician, (1907).
  • 12. R.N. Vyvyan, Marconi and His Wireless, EP Publishing, London, 1974. First published as Wireless over 30 Years, by Routledge and Keegan, London, 1933.
  • 13. W.D. Lawson, S. Nielson, E.H. Pulley, A.S. Young, “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe”, J. Phys. Chem. Solids 9, 325-329 (1959).
  • 14. I. Melngailis and T.C. Harman, “Single-crystal lead-tin chalcogenides”, in Semiconductors and Semimetals, Vol 5, pp. 111-174, edited by R.K. Willardson and A.C. Beer, Academic Press, New York (1970).
  • 15. W.S. Boyle and G.E. Smith, “Charge coupled semiconductor devices”, Bell Syst. Tech. J. 49, 587-593 (1970).
  • 16. D.F. Barbe, “Imaging devices using the charge-coupled concept”, Proc. IEEE 63, 38-67 (1975).
  • 17. A.J. Stecki. R.D. Nelson, B.T. French, R.A. Gudmundsen, and D. Scheehter, “Application of charge-coupled devices to infrared detection and imaging”, Proc. IEEE 63, 38-67 (1975).
  • 18. C. Corsi, “Infrared detector arrays by new technologies”, Proc. IEEE 63, 62-75 (1975).
  • 19. C.T. Elliot, D. Day, and D. Wilson, “An integrating detector for serial scan thermal imaging”, Infrared Phys. 22, 31-42 (1982).
  • 20. F. Shepherd, “Schottky diode infrared detectors”. Proc. SPIE 443, 42 (1983).
  • 21. W. Kosonocky, “Schottky barrier IR CCD e arrays”, Proc. SPIE 443, 167 (1983).
  • 22. S.D. Gunapala and S.V. Bandara, "Quantum-well IR photodetectors”, Thin Films 21, 113 (1995).
  • 23. R. Watton, “Ferroelectric materials and devices in infrared detection and imaging”, Ferroelectrics 91, 87 (1989).
  • 24. R.A. Wood, C.J. Han, and P.W. Kruse, “Integrated uncoolcd infrared detector imaging arrays”, Proc. IEEE Solid State Sensors & Actuators Workshop, 132-135 (1992).
  • 25. C.T. Elliott, “Future infrared detectors technologies”, Proc. IEEE Conf. Advanced Detectors and Systems., 61-68 (1990).
  • 26. C. Corsi, “Rivelatori IR: stato dell’arte e trends di sviluppo futuro”, Atti Fondazione Ronchi XLVI 5, 801-810 (1991). (IN ITALIAN).
  • 27. C. Corsi, “Future trends and advanced development in I.R. detectors”. Proc. 2nd Joint Conf 132-135, London, 1996.
  • 28. P.R. Norton, “Status of IR detectors”, Proc. SPIE 3379, 102-114(1998).
  • 29. M. Razcghi, “Current future trends of IR detectors”, Opto-Electron. Rev. 6, 155-194 (1998).
  • 30. P. Norton, J. Campbell III, S. Horn, and D. Reago, “Third-generation infrared imagers”, Proc. SPIE 4130, 226-236 (2000).
  • 31. A. Rogalski, “IR detectors: the next millennium”, Proc. SPIE 4413, 307-322 (2001).
  • 32. A. Rogalski, “IR detectors: status trends”, Progress Quant. Electron. 27, 59-210 (2003).
  • 33. C. Corsi, “ History’s lesson and future trends and advanced development in I.R. detectors”, Proc. 4th AITA Conf. (1997), A tli della Fondazione Giorgio Ronchi L III 13, 11-20 (1998).
  • 34. C. Corsi, “IR Technologies: history lessons and new perspectives”, Proc. 9th AITA Conf., pp. 4-19, M. Strojnie Ed., Mexico, 2007.
  • 35. C. Corsi, “Infrared and the others”, in 6th AITA Conf. Giorgio Ronchi Found. LVII3, 363-369 (2002).
  • 36. C. Corsi, N. Liberatore, S. Mengali, A. Mercuri, R. Viola and D. Zintu, “Advanced applications to security of IR smart microbolometers”, Proc. SPIE 6739, 673915 (2007).
  • 37. N. Oda, H. Yoneyama, T. Sasaki, M. Sano., S. Kurashina, I. Hosako, N. Sekine, T. Sudou, and T.Irie, “Detection of Thz radiation from quantum cascade lasers using VOx microbolometers FPAs”, Proc. SPIE 6940, 69402 (2008).
  • 38. D.L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors”, J. Appl. Phys. 62,2545 (1987).
  • 39. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, “Quantum cascade laser”, Science 264, 553-556(1994).
  • 40. M.P. Semtsiv, M. Wienold, S. Dressier, and W.T. Masselink, “Short-wavelength InP based strain-compensated quantum-cascade laser”, Appl. Phys. Lett. 90, 0511 11 (2007).
  • 41. B.S. Williams, “Terahertz quantum cascade lasers”, Nat. Photonics 1, 517-525 (2007).
  • 42. Terahertz Sensing Technology Vol. 1, Selected Topics Electronics and Systems Vol. 30, ed. D. Woolard, W. Leorop, and M.S. Shur, World Scientific, Singapore, 2003.
  • 43. Terahertz Sensing Technology Vol. 2, Selected Topics Electronics and Systems Vol. 32, ed. D. Woolard,.W Leorop, and M.S. Shur, World Scientific, Singapore, 2004.
  • 44. M. Vitiello, S. Scamarcio,V. Spagnolo, S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency”, Appl. Phys. Lett. 90, 191115 (2007).
  • 45. Graphene, Carbon Nanotubes, and Nanostructures: Techniques and Applications, (Devices, Circuits, and Systems), ed. by J.E. Morris and K. Iniewski, CRC Press, Boca Raton. 2013.
  • 46. C. Corsi, Proc. Int. NATO Electronics Warfare Conference, Washington DC, 1978.
  • 47. C. Corsi, “Smart sensors”, Proc. SPIE 1512, 52 (1991).
  • 48. C. Corsi, “Smart sensors”, Microsyst. Technol. 1, 49-154 (1995).
  • 49. C. Corsi, “Smart sensors”, Proc. SPIE 6297, 62970W (2006).
  • 50. C. Corsi, “Smart sensors”, Proc. 8th AITA Infrared Phys. 49, 192-197 (2007).
  • 51. C. Corsi, Systems for avoiding collision of vehicles in low visibility conditions. European Patent W0/2000/022596, 2000.
  • 52. C. Corsi, “Smart sensors: Why and when the origin was and why and where the future will be”, Proc. SPIE 8993, 899301 (2013).
  • 53. C. Corsi, G. Di Nola, G. Marangoni, and G. Salcito, Nat. Patent n.47722°/80 Tech. Rep. PT-79 Elettronica S.pA., 1979.
  • 54. http://www.reddingthermography.com/.
  • 55. J.D. Bronzino (ed.), Medical Devices and Systems, CRC Press Taylor & Francis, Boca Raton, 2007.
  • 56. E.F.J. Ring and K. Amner (ed.), The History of Thermal Imaging in the Thermal Image in Medicine and Biology, pp. 3-20, Elsevier, Vienna, 1995.
  • 57. K. Louis, J. Walter, and M. Gautherie, “Long-term assessment of breast cancer risk by thermal imaging” in Biomedical Thermology, A.R. Liss Inc., pp. 279-301, New York, 1982.
  • 58. M. Gauthric, “Improved system for the objective evaluation of breast thermograms” in Biomedical Thermology, A.R. Liss Inc., pp. 897-905, New York, 1982.
  • 59. J. Spitalier, D. Amalric, C. Gros, and M. Gautherie, “The importance of infrared thermography in the early suspicion and detection of minimal breast cancer. Thermal assessment of breast health” Proc. Int. Conference on Thermal Assessment of Breast Health, MTP Press Ltd., pp. 173-179, Washington DC, 1983.
  • 60. R. Amalric, D. Giraud, and M. Gautherie, “Combined diagnosis of small breast cancer”, Acta Thermographica 181, 21-24(1984).
  • 61. C. Corsi, “Sistemi radiometrici computerizzati per applicazioni diagnostiehe”, 9-15, Ed. Elletronica Proc. Biomedical International Conf., S. Elpidio, Italy, 1981.
  • 62. C. Corsi, “Digital infrared functional thermography: ADIR” Acta Thermographica, 33-39 (1983).
  • 63. Infrared and Thermal Testing, ASNT Handbook 3rd Ed., Vol. 3, technical editor X. Maldague, Editor: Patrick O. Moores, 2001.
  • 64. P. Bison, F. Cernuschi, and E. Grinzato, “In-depth and in-plane thermal diffusivity measurements of thermal barrier coatings by ir camera: evaluation of ageing”, Int. J. Thermophys. 29, 2149-2161 (2008) DOI 10.1007/s 10765-008-0421-1.
  • 65. V. Vavilov, T. Kauppinen, E. Grinzato, Research in Nondestructive Evaluation, Vol. 9, pp. 181-200, Springer-Verlag, New York, 1997.
  • 66. E. Grinzato, P.G. Bison, S. Marinetti, “Monitoring of ancient buildings by thermal method”, J. of Cultural Heritage 3, 21-29 (2002).
  • 67. G.M. Carlomagno, M. Carlomagno, G. Cardone, T. Astarita, and L. de Luca, “Wall heat transfer instatic and rotating 180_turns channels by quantitative infrared thermography”. Rev. Gen. Therm. 37, 644-652 (1998).
  • 68. D.W. Banks, C.P. van Dam, H.J. Shiu, R.R. Tracy, and J. Chase, “In-flight visualization of supersonic flow transition using infrared imaging”, Technical report 2001-210848, NASA Dryden Flight Res. Centre Edwards Ca, J. Aircraft, 39, 936-944 (2002).
  • 69. T. Astarita, G. Cardone, G. Carlomagno, and C. Meola, “A survey on infrared thermography for convective heat transfer measurement”. Opt. Laser Technol. 32, 593-610 (2001).
  • 70. W. Fleming, “High resolution submillimeter-wave Fourier-translbrm penetrometry of gases,” IEEE T. Microw. Theory 22, 1023-1025 (1974).
  • 71. H. Rubens and E.F. Nichols, “Heat rays of great wavelength”, Phys. Rev. 4, 314 (1897).
  • 72. H. Rubens and F. Kurlbaum, Astrophys. J. 14, 335 (1901).
  • 73. EF. Nichols and J.D.Tear “Joining the infrared and electric wave spectra”, Phys. Rev. 21, 378, 1923.
  • 74. J.C. Bose, “On the selective conductivity exhibited by certain polarizing substance,” Proc. IEEE 86, 225-226 (1998), Microwave Symp. Digest 2, 244-247 (1997), IEEE T. Microw. Theory 2, 557-560 (1997).
  • 75. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap”, Phil. Trans. R. Soc. London. A362, 199-213 (2004).
  • 76. P. Siegel, “THz technology in biology and medicine”, IEEE T. Microw. Theory 52, 2438-2447 (2004).
  • 77. A.J. Kerecman, “The tungsten-P type silicon point contact diode,” IEEE T. Microw. Theory 22, 30-34 (1973).
  • 78. J.R. Ashley and F.M. Palka, “Transmission cavity and injection stabilization of an X-band transferred electron oscillator”, IEEET. Microw. Theory 22, 181-182(1973).
  • 79. P.H. Siegel, “THz Technology” IEEE T. Microw. Theory 50, 910-928 (2002).
  • 80. M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A. J.Fitzgerald, and W.R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44-52 (2003).
  • 81. W.R. Tribe, D.A. Newnham, P.F. Taday, and M.C. Kemp, “Hidden object detection: security applications of terahertz technology”, Proc. SPIE 5354, 168-176 (2004).
  • 82. C. Baker, T. Lo, W. Tribe, B.E. Cole, M.K. Hogbin, and M.C. Kemp, “Detection of concealed explosives at a distance using terahertz technology”. Proc. IEEE 95, 1559-1565 (2007).
  • 83. J.P. Gordon, H.J. Zeiger, and C.H. Townes, “The maser-new type of microwave amplifier, frequency standard, and spectrometer”, Phys. Rev. 99, 1264-1268 (1955).
  • 84. L. Schalow and C.H. Townes, “Infrared and optical masers”, Phys. Rev. 112, 1940-1849 (1958).
  • 85. K. Evenson, D. Jennings, and F. Petersen, “Tuneable far infrared spectroscopy”, Appl. Phys. Lett. 44, 576 (1984).
  • 86. J. Faist, F. Capasso, C. Sirtori, D. Sivco, and A. Chon, “Intersubband transitions in quantum wells”, Physics and device applications II, Vol. 66 (eds H.C. Liu and F. Capasso) pp. 1-83, Academic, San Diego, 2000.
  • 87. R. Kohler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi “Terahertz semiconductor-heterostructure laser”, Nature 417, 156-159 (2002).
  • 88. R. Ulrich, "Far-infrared-properties of metallic mesh and its complementary structure”, Infrared Phys. 7, 37 (1967).
  • 89. C. Corsi, G. Fiocco, and G. Magyar, “Quasi optics multi-layers metal filters”, Int. Rep. ESRIN, Frascati, 1970.
  • 90. C. Corsi and F. Sizov (Eds.), “THz and security applications”, Proc. NATO Science for Peace and Security Series-B-Physics and Biophysics, Vol. ISSN 1874-6500, Springer, Dordrecht, 2014, DOI 10.1007/978-94-017-8828-1-6.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8a79e108-8748-46af-8f95-05e5fb3d9e1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.