Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | R. 22/84, nr 3 | 187--200
Tytuł artykułu

Betony o dużej wytrzymałości z cementu portlandzkiego z dodatkiem metakaolinu uzyskanego z piasków kaolinowych ze złoża w pobliżu Lućenec na Słowacji

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
High - strength concrete from Portland cement with addition of metakaolin obtained of kaolin sand from deposit near Lučenec in Slovakia
Języki publikacji
PL EN
Abstrakty
PL
W pracy zbadano przydatność piasku kaolinowego z miejscowości Vyšný Petrovec koło Lućenec na Słowacji jako surowca do produkcji metakaolinu. Ten surowiec, nazywany piaskiem kaolinowym, zawiera tylko około 50% masowych kaolinitu, jednak po dehydroksylacji w temperaturze 650°C osiąga po 28 dniach właściwości pucolanowe na poziomie 87%. Dodatek tego metakaolinu do spoiwa, zastępującego część cementu, ma korzystny wpływ na właściwości betonu. Taki skład betonu zwiększa wytrzymałość oraz moduł Younga, a także odporność na zamrażanie i rozmrażanie w obecności NaCl, bez napowietrzenia. Uzyskano także zmniejszenie ekspansji betonu o jedną trzecią w porównaniu do kompozytu referencyjnego.
EN
In the paper the results of the kaolin sand from Vyšný Petrovec near Lućenec in Slovakia application as a raw material for metakaolin production is presented. This kaolin sand is containing only about 50% by mass of kaolinite, however, after dehydroxylation at 650°C has the pozzolanic reactivity of 87%. The positive effects of metakaolin addition replacing part of cement in concrete are the following: the increase of strength and Young's modulus of elasticity and the increase of resistance to de-icing salts and to freezing and thawing without air entrainment. Additionally also the reduction of expansion by more than one third in comparison to the reference concrete was obtained.
Wydawca

Czasopismo
Rocznik
Strony
187--200
Opis fizyczny
Bibliogr. 57 poz., il., tab.
Twórcy
  • Building Testing and Research Institute, Bratislava, Slovakia
autor
  • Building Testing and Research Institute, Bratislava, Slovakia
  • Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Bratislava, Slovakia
  • Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Bratislava, Slovakia
Bibliografia
  • 1. CEMBUREAU activity report 2013 (D2014/5457), The European Cement Association Brussels, Belgium 2014.
  • 2. E. Gartner, Industrially interesting approaches to “low - CO2” cements, Cem. Concr. Res., 34, 1489-1498 (2004).
  • 3. M. Schneider, CO2 - Minderung Weltweite Anforderungen. Proceedings Technisch Wissenschaftliche Zementtagung, Dűsseldorf, 1-27 (2011).
  • 4. M. Palou, J. Majling, M. Dováľ, J. Kozánková, S. C. Mojumdar, Formation and stability of crystallohydrates in the non-equilibrium system during hydration of SAB cements, Ceram. – Silikaty, 49, 230-236 (2005).
  • 5. P. S. L. Souza, D. C. C. Dal Molin, Viability of using calcined clays from industrial by-products as pozzoland of high reactivity, Cem. Concr. Res., 35, 1993-1998 (2005).
  • 6. V. G. Papadakis, S. Tsiman, Supplementary cementing materials in concrete: Part I: efficiency and design, Cem. Concr. Res., 32, 1525-1532 (2002).
  • 7. STN EN 197-1: Cement. Part 1: Composition, specifications and conformity criteria for common cements. Bratislava: Slovak Office of Standards, Metrology and Testing, 2012.
  • 8. C. He, B. Osback, E. Makovicky, Pozzolanic reactions of six principal clay minerals: Action, reactivity assessment and technological effects, Cem. Concr. Res., 25, 1691-1702 (1995).
  • 9. J. Ambroise, S. Maximilien, J. Pera, Properties of metakaolin blended cements, Adv. Cem. Res., 1, 161-168 (1993).
  • 10. D. D. Vu, Strength properties of metakaolin-blended paste, mortar and concrete, Delft: DOP Science Editors, Delft University Press 2002.
  • 11. N. J. Coleman, C. L. Page, Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin, Cem. Concr. Res., 27, 147-154 (1997).
  • 12. C. S. Poon, L. Lam, S. C. Kou, Y. L. Wong, C. C. Wong, Rate of pozzolanic reaction of metakaolin in high performance cement pastes, Cem. Concr. Res., 31, 1301-1306 (2001).
  • 13. M. Frias, J. G. Cabrera, Pore size distribution and degree of hydration of MK cement paste. Cem. Concr. Res., 30, 561-569 (2000).
  • 14. M. Frias, M. J. Sanchez de Rojas, Influence of the MK on pororus of matrixes based in MK/cement, Mater. de Constr., 50, 57-67 (2000).
  • 15. S. S. Sabir, S. Wild, J, Bai, Metakaolin and calcined class as pozzolans for concrete: a review, Cem. Concr. Compos., 23, 441-454 (2001).
  • 16. M. Zemlicka, E. Kuzielova, M. Kuliffayova, J. Tkacz, M. Palou, Study of hydration products in the model systems metakaolin - lime and metakaolin-lime-gypsum, Ceram. – Silikaty, 59, 283-291 (2015).
  • 17. E. Badogiannis, G. Kakali, G. Dimopolou, E. Chaniotakis, S. Tsivilis, Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins, Cem. Concr. Compos., 27, 197-203 (2005).
  • 18. E. Badogiannis, V. G. Papadakis, E. Chaniotakis, S. Tsivilis, Exploitation of poor Greek kaolins: strength development of metakaolin concrete and evaluation by means of k-value, Cem. Concr. Res., 34, 1035-1041 (2004).
  • 19. D. D. Eberl, User´s guide to RockJock – a program for determining quantitative mineralogy from powder X-ray diffraction data, US Geological Survey, (Open File Report 03-78), 2003.
  • 20. I. Kraus, P. Uhlík, M. Dubíková, T. Manfredini, J. Pavlíková, V. Šucha, M. Hanísková, M. Honty, Mineralogical, chemical and technological characterization of metakaolin sand. Marco Poppi, Fernanda Andreola and Daniele Malferrari Editors, EUROCLAY proceedings abstract book, 160-161, Italy 2003.
  • 21. L. Krajci, I. Janotka, F. Puertas, M. Palacios, M. Kuliffayova, Long-term properties of cement composites with various metakaolinite contents, Ceram. - Silikaty, 57, 74-81 (2013).
  • 22. I. Janotka, F. Puertas, M. Palacios, M. Kuliffayova, C. Varga, Metakaolin sand-blended-cement pastes: Rheology, hydration process and mechanical properties, Constr. and Build. Mater., 24, 791-802 (2010).
  • 23. M. Shekarchi, A. Bonakdar, M. Bakshi, A. Mirdamadi, B. Mobasher, Transportation properties in metakaolin concrete, Constr. Build. Mater., 24, 2217-2223 (2010).
  • 24. V. Srivastava, R. Kumar, V. C. Argaval, Metakaolin inclusion: Effect on mechanical properties of concrete, J. Acad. Indus. Res., 1, 251-253 (2012).
  • 25. J. M. Justice, K.E. Kurtis, Influence of metakaolin surface area on properties of cement-based materials, J. Mater. Civ. Eng., 19, 762-771 (2007).
  • 26. H. S. Wong, A. H. Razak, Efficiency of calcined metakaolin and silica fume as cement replacement material for strength performance, Cem. Concr. Res., 35, 696-702 (2005).
  • 27. B. B. Patil, P. D. Kumbhar, Strength and durability properties of high performance concrete incorporating high reactivity metakaolin, Int. J. Modern. Eng. Res., 2, 1099-1104 (2012).
  • 28. S. N. Patil, A. K. Gupta, S. S. Desphande, Metakaolin-pozolanic material for cement in high strength concrete, J. Mech. Civ. Eng., 2, 46-49 (2011).
  • 29. P. Dinakar, P. K. Sahoo, G. Sriram, Effect of metakaolin content on the properties of high strength concrete, Int. J. Concr. Struc. Mater., 7, 215-223 (2015).
  • 30. E. Vejmělková, M. Pavlíkova, M. Keppert, Z. Keršner, P. Rovnaníková, P. Ondráček, M. Sedlmajer, R. Černý, High performance concrete with Czech metakaolin: Experimental analysis of strength, thoughness and durability characteristics, Construc. Build. Mater., 24, 1404-1411 (2010).
  • 31. P. Muthupriya, K. Subramanian, B. G. Vishnuram, Investigation on behaviour of high performance reinforced concrete columns with metakaolin and fly ash as admixture, Int. J. Adv. Eng. Tech., 2, 190-202 (2011).
  • 32. M. N. Al- Akhras, Durability of metakaoilin concrete to sulfate attack, Cem. Concr. Res., 36, 1727-1734 (2006).
  • 33. H. M. Khater, Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution, Ceram – Silikaty, 54, 325-333 (2010).
  • 34. Chao Li, Henghu Sun, Longtu Li, A review: The comparison between alcali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements, Cem. Concr. Res., 40, 1341-1349 (2010).
  • 35. H. Paiva, A. Velosa, P. Cachim, V. M. Ferreira, Effect of pozzolans with different physical and chemical characteristics on concrete properties, Mater. de Construc., 66, e083 (2016).
  • 36. STN EN 12620 + A1: Aggregates for concrete. Bratislava: Slovak Office of Standards, Metrology and Testing, 2008.
  • 37. M. Frias, M. I. Sanchez de Roja, J. Cabrera, The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin - cement mortars, Cem. Concr. Res., 30, 209-216 (2000).
  • 38. S. Donatello, M. Tyrer, C. R. Cheeseman, Comparison of test methods to assess pozzolanic activity, Cem. Concr. Compos., 32, 121-127 (2010).
  • 39. STN EN 12390-2: Testing hardened concrete. Part 2: Making and curing specimens for strength tests. Bratislava: Slovak Office of Standards, Metrology and Testing, 2010.
  • 40. STN EN 12350-2: Testing fresh concrete. Part 2: Slump-test. Bratislava: Slovak Office of Standards, Metrology and Testing, 2010.
  • 41. STN EN 12350-6: Testing fresh concrete. Part 6: Density. Bratislava: Slovak Office of Standards, Metrology and Testing, 2011.
  • 42. STN EN 12350-7: Testing fresh concrete. Part 7: Air content. Pressure methods. Bratislava: Slovak Office of Standards, Metrology and Testing, 2011.
  • 43. STN EN 12390-3/AC: Testing hardened concrete. Part 3: Compressive strength of test specimens. Bratislava: Slovak Office of Standards, Metrology and Testing, 2010.
  • 44. STN 73 1371: Method of ultrasonic pulse testing of concrete. Bratislava: Slovak Office of Standards, Metrology and Testing, 1981.
  • 45. STN ISO 6784: Concrete. Determination of static modulus of elasticity in compression. Bratislava: Slovak Office of Standards, Metrology and Testing, 1993.
  • 46. STN EN 12390-7: Testing hardened concrete. Part 7: Density of hardened concrete. Bratislava: Slovak Office of Standards, Metrology and Testing, 2011.
  • 47. STN 73 1316: Determination of moisture content, absorptivity and capillarity of concrete. Bratislava: Slovak Office of Standards, Metrology and Testing, 1989.
  • 48. STN EN 12390-8: Testing hardened concrete: Part 8: Depth of penetration of water under pressure. Bratislava: Slovak Office of Standards, Metrology and Testing, 2011.
  • 49. STN 73 1322: Change 1-3/03. Correction 1 - 6/04. Determination of frost resistance of concrete. Bratislava: Slovak Office of Standards, Metrology and Testing, 1968.
  • 50. STN 73 1317: Determination of compressive strength of concrete. Bratislava: Slovak Office of Standards, Metrology and Testing, 1986.
  • 51. STN EN 12390-5: Testing hardened concrete. Part 5: Flexural strength of test specimens Bratislava: Slovak Office of Standards, Metrology and Testing, 2011.
  • 52. STN 73 1326: Resistance of cement concrete surface to water and defrosting chemicals Bratislava: Slovak Office of Standards, Metrology and Testing, 1984.
  • 53. E. Mazzucato, G. Artioli, A. Gualtieri, High temperature dehydroxylation of muscovite - 2M: a kinetic study by in situ XRPD, Phys. Chem. Miner., 26, 375-381 (1999).
  • 54. T. Kazauyo, N. Satoru, Dehydration kinetics of muscovite by in situ infrared spectroscopy, Phys. Chem. Miner., 37, 91-101 (2010).
  • 55. H. W. Day, The high temperature stability of muscovite plus quartz, Amer. Miner., 58, 255-262 (1973).
  • 56. B. Sonuparlak, M. Sarikaya, I. A. Aksay, Spinel phase formation during the 980°C exothermic reaction in the kaolinite-tomullite reaction series, J. Am. Ceram. Soc., 70, 837-842 (1987).
  • 57. STN EN 206: Concrete. Specification, performance, production and conformity. National Annex. Bratislava: Slovak Office of Standards, Metrology and Testing, 2015.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-73f0df38-60f9-49dd-9614-d262b704234c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.